CP/M

OPERATING SYSTEM

MANUAL

CP/M 2.2 A description
for CASIO FP-1000 series

(Revised edition)

CONTENTS
1 CP/M 2.2 A description for CASIO FP-1000 series

1. Update information of CP/M2.2BIOScooiiiiiiiii 1
2. Theupdate points of CP/M 2.2 A ...t 1
3. CP/M OPErationc.ouniniii et 2
4. The back-UP COPY «.vniuiiie e 2
5. CP/MMEMOTY MAP ..ttt et e 4
6. Keyboard ...t 5
7. Escape sequence and control code for CRT ... 8
8. Support 0f RS-232C .. . 8

1) Data inPuUt ..o 8

2) Data transmission mModec.oiiiiiiii i 9
9. Device assiZNIMENt ... 9
AddIION T oo 10
AddItION 2 Lo 10

AddItION 3 oo 10

CP/M 2.2 A description
for CASIO FP-1000 series

1. Update information of CP/M 2.2 BIOS

According to the revision from CP/M 2.2 to CP/M 2.2 A , please be careful about the
following points.
1) The CP/M 2.2 A cannot be used for old version of FP-1000/1100.

The new version of FP-1000/1100 means that the new EPROM must be installed to the

IC socket, location No. E21 of CPU. New EP-ROM number is JKC version.
2) CP/M2.2 CP/M22A

OIld FP-1000/1100 Available Not available

New FP-1000/1100 Available Auvailable

(with new EPROM)

2. The updated points of CP/M 2.2 A

1) Speed-up of character display, cursor movement, and scrolling-up.
2) Printer “not ready” processing
The FP-1000/1100 waits until the printer becomes ready.
3) 40 characters’ key bulffer is installed.
4) BEEP ON/OFF function.
5) FORMAT command
6) BREAK key function 1

3. CP/M operation

CP/M for CASIO FP-1000 series is operative with the following system configuration.

« FP-1000 (or FP-1100)
e FP-1020FD
* CRTdisplay

The CRT display must be 80 characters width horizontally irrespective of monochrome or
color.

When you operate CP/M, please insert CP/M disk sheet into drive-0 of FP-1020FD and
then power on FP-1000/1100.
When the power has already been supplied to FP-1000/1100, you may push the reset switch
on the back side of FP-1000/1100.

Once the power is on, the access lamp of drive-0 will be illuminated and the “A >" prompt
message will be displayed following the CP/M opening message on the screen.

The prompt message of “A>" indicates the system is waiting for the CP/M command
entry based upon the drive-0.
In this way, under the CP/M operating system, the drive names are specified in alphabetical
order like A, B, C, D and drive-0 is defined as A, drive-1 is defined as B.

<NOTE>

Under the CP/M, as the machine operates 80 character mode, the DIP switch 1 must be
ON and DIP switch 2 must be OFF respectively.

The DIP switches are located at the bottom of the CPU.

4. The back-up copy

In the CP/M for FP-1000 series, the following 3 programs are included to make backup
copy.

1) FORMAT. COM
2) SYSGEN. COM
3) PIP. COM

The FORMAT program operates as following

A>FORMAT <CR>

The disk sheet in the specified drive is formatted by FORMAT command.

As the CP/M disk format is different from that of Cs2-BASIC, the initialization must be
done by the FORMAT command under CP/M.
Both physical and logical formatting are performed by FORMAT command.

You can format your disk sheet as many times as you want, if the FORMAT command is
activated.
The second SYSGEN program operates as following.

A>SYSGEN <CR>

SYSGEN is used to copy CP/M operating system and you must reply to some questions on
the screen display sequentially via keyboard.

f e CIRMAT

Foar et Disbk, BEobor Dedws Mams (G, B, C0 B
Fonrmat Disk on BoHILL Reboarn key

e oy e (VSN Y

Format Bl

Combimue (YA W

AXBYSEEN

SYSGEN VER 2.0 FOR FP-1000/1100

SOURCE DRIVE NAME (OR RETURN TO SEIF)A

SOURCE ON A, THEN TYFE RETURN

FUNCTION COMFLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)E
DESTINATION ON B, THEN TYFE RETURN

FUNCTION COMFLETE

DESTINATION DRIVE NAME (OR RETURN TO REERDOT)

The PIP program copies files recorded on disk file.
All files in drive A are copied to drive B by the following command.

A>PIP B:=A:*.x[y]<CR>

B:= A:*.% indicates that all files in drive A are copied to drive B and [V] is used to check if
the copy is done correctly, which assures the accurate copy.
We recommend you to make back-up disk for the purpose of protection of CP/M master

disk.

Please attatch write protect label to the master disk and use the copied disk for normal use.

AXFIF Ba=QA:%.%

DT COM
CvéT . T

aD IR
MO

i
£

5. CP/M memory map

CP/M memory map is different from that of Cs2-BASIC.
The user I/0 handler can be built into CP/M by using the address area F400H-FCFFH

FFFFH SEEET
BIOS
CP/M
FDOOH WORK AREA
CC00H FCFFH
EMPTY AREA
F400H
F3FFH
BIOS
TPA E200H
E1FFH
BDOS
D406H
100H D405H
ccp
00H CCO0H

6. Key board

After the activation of CP/M 2.2 A, the small character entry is the normal mode. In order
to enter the capital letter, please press CAPS key.
The code or character corresponding to key entry can be referred by the keyboard layout
attached to hereinafter. The key entry codes are generated quite similar to Cs2-BASIC except

PF key, Break, and CONT/STOP key.

Break and CONT/STOP key generates 03H and 04H respectively which are similar to
CTRL-C and CTRL-D.
CTRL-C 03H

Break

CONT/STOP CTRL-D 04H

The CP/M for FP-1000/1100 supports programmable function key in the similar way to Cez-
BASIC and built-in command and TPA command are set and the TPA command
KEY.COM can refer the contents of defined key or redefine. The number of characters de-
fined by PF key are up to 7 characters and any character arrays can be established.

Keyboard layout

CLs
HOME

INS

DEL

BREAK

SHIFT
PFo | PF1 | PF2 | PE3 | PF4 PF5 | PF6 | PF7 | PF8 | PF9
' B S | % | & | {) I
ESC BS
1 2 4 5 6 7 8 9 0 - A N
cTRLla |w R IT v Ju | fo |p] I RETURN
((
SHIFT] + * [
O tock|A S F G H J K L . | |GRapH
< > ? s
SHIFT [z |x Jc |v [B [N |m = SHIFT

(SPACE)

¢ Key codes other than alpha-numerics

ESC

BS
RETURN
CLS
HOME

—_—

—

t

!

SHIFT—
SHIFT —
SHIFT!
SHIFT!
INS

DEL

SHIFT INS
SHIFT DEL
ENTER
BREAK
STOP/CONT

CTRL{
CTRL-H
CTRL-M
CTRL-L
CTRL-K
CTRL-\
CTRL]
CTRL-A
CTRL-_
CTRL-F
CTRL-B
CTRL-P
CTRL-A
CTRL-R
CTRL-Q
CTRL-U
CTRL-E
CTRL-W
CTRL-C
CTRL-D

1BH
08H
ODH
0CH
O0BH
1CH
1DH
1EH
1FH
06H
02H
10H
01H
12H
11H
15H
05H
17H
03H
04H

y
CONT

ENTER]

PFO
PF1
PF2
PF3
PF4
PF5
PF6
PF7
PF8
PF9

CTRL-Z 1AH SHIFT PFO CTRL-Z 1AH
CTRL-S 13H SHIFT PF1 CTRL-S 13H
‘DIRL’ SHIFT PF2 ‘PIPL
‘ERAL’ SHIFT PF3 ‘EDL’
‘TYPEW’ SHIFT PF4 ‘LOADL’
‘RENL’ SHIFT PF5 ‘SAVEL'’
‘STATU’ SHIFT PF6 ‘KEYW’
CTRL-P 10H SHIFT PF7 CTRL-P 10H
7FH SHIFT PF8 7FH
CTRL-I 09H SHIFT PF9 CTRL-I 09H

The program KEY. COM is used to display the contents of PF key and to modify the
established contents.
The program key is the following command.

A> KEY <CR>

Once it is operated, the contents of PF key is displayed on the screen and wait for command

input.

Each command has the following function

K:

oor

E:

?: Help command. Display the meaning of the command K, L, Q, E and O etc.

Establishment of key

For example, in order to establish DIR B: <CR> to PF9, enter the following com-
mand, enclosing the character array with the quotation mark and enter the 2 digits
hexadecimal control code value.

Display the key list

: Return the contents of PF key to the initial set value
: Re-boot the CP/M. This command does not write the contents of PF key on the

disk.
So the contents of PF key do not vary.

Register the contents to the disk, reboot and return to CCP.

The contents of PF key which is established by the program key is written on the disk.
Because of this, once it is established, you can conveniently use this every time you want
after power-on or re-boot. However, please keep in mind that the contents of PF key are
established on the disk drive 0 and has no relation to the current drive.

< NOTE3> In this case, all the commands must be the capital letters.

FAEREY

W¥HWEEE FEY [LIST ®#%%%%

FEYOO=1H .
FEYO1=13 .
FEYDZ=44495220 DIR
FEYOQOI=43524120 ERA
FEYO4=5459504520 TYFE
FEYOQS5=52484E20 REN
KEYO&=5354415420 STAT
FEYO7=10 .
KEYO8=7F

FEYOQ=09 .
FEY1O=1A .
FEY11=13 .
FEY12=580493020 FIF
FEY13=454420 ED
FEY14=4C4F 414420 LOAD
FEY1&=5341564520 SAVE
FKEY 16=4RB435920 EEY
FEY17=10 .
KEY 18=7F

FEY19=09 .

COMMANDLEKLOG? I=KO="DIR H:"OD
FEYOO=444952204273A0D DIR H:.
COMMAND LEFLOG? 1="7

E)ind FReboot with Changes

EDd ey FNnn=. ... EO=0DOA OR K11="A5M
Llist

Mrigin Initialize Key

uit Reboot without Changes

COMMANDLEFLOCQT I=k

<NOTE> Please refer to Addition 1 and 2.

XX"0D

7. Escape sequence and control code for CRT

The CP/M for the FP-1000 series supports the escape sequences compatible to ADM3A
and SOROC-IQ120, and several control codes.
Escape sequence

<ESC> < = > yx

<ESC>
<ESC>
<ESC>
<ESC>
<ESC>
<ESC>
<ESC>
<ESC>

<T>
<Y>
< k>
<(>
<)>
<C>
<P>
<{>

<ESC> <>

e Control code

CTRL-G
CTRL-H
CTRL-I

CTRL-J

CTRL-K
CTRL-L
CTRL-M
CTRL-\
CTRL-]

CTRL- A
CTRL-_

07H
08H
09H
0AH
0BH
O0CH
ODH
1CH
1DH
1EH
1FH

Sets a cursor position
The value of y and x is the cursor coordinates (The home posi-
tion on the screen is (0,0) of the coordinates)

Clears from the cursor position to the end of the line
Clears from the cursor position to the end of the screen

Clears all the screen
Specifies the reverse of the display

Specifies the normal display
Specifies the ON/OFF of the cursor display function

Hard copy to the printer
Beep ON
Beep OFF

Generates beep sound

Back space

HTAB (cursor movement to the next 8th character)
Line feed

Cursor movement to the home position

Clear of the screen

Carriage return

Cursor movement to the right side direction
Cursor movement to the left side direction

Cursor movement to the upper side direction

Cursor movement to the lower side direction

8. Support of RS-232C

Under the CP/M for FP-1000 series, RS-232C input/output which corresponds to
Ce2-BASIC “COMO:" is supported. This RS-232C can be handled as “PTP:" for output and
“PTR:” for input under the CP/M.

1) Data input
The data input from RS-232C port is processed by interrupt similar to Cs2-BASIC and
because of the internal 255 bytes receive buffer, the high speed processing is possible.
However, when the CPU interrupt is prohibited or the buffer overflow occurs, the data

will not be received.

2) Data transmission mode
There are four dip-switches on the RS-232C I/F package (FP-1035RS) for FP-1000

series.

From switch 1 through switch 3 are used to establish the baud rate. The remaining switch
4 had nothing to do with transmission mode in Cs2-BASIC , but the transmission
mode is decided by this switch 4 under the CP/M.

SWITCH 4: ON 7bit data + even parity
SWITCH 4: OFF 8 bit data non parity

However, in either case, the stop bit is 2.
In this way, 2 modes can be established by this switch, but in case you want to establish
other transmission mode, you can modify the contents of BIOS memory directly.

EX. A>DDT)
DDT VER 2.2
—S FFFD) (Set mode switch flag)

FFFD 00 FF) — (Specify 7 bit even parity by 8251A mode
FFFE FA) command code)

FFFF 00 o)
—ANC (re-boot)
A>__

NOTE
(1) Even when the transmission mode is 7 bit, SO (OEH) and SI (OFH) code cannot be
supported in BIOS.
(2) More than 2 RS-232C package cannot be inserted under the CP/M system.

9. Device assignment

Keyboard and display are assigned and controlled by device name under the CP/M
system and FP-1000 series are assigned by the following device name under CP/M.

Al

B:

c: Each corresponds to drive 0 through 3 of FP-1020FD
D:

TTY! Key

CRT: CRT display

LPT: MX-80 Type Ill printer
PTR: RS-232Cinput

PTP. RS-232C output

Under the CP/M for FP-1000 series, nothing other than above devices are supported, but
when the user defined devices are used, the following areas can be used as an each entry
address of each device processing routine.

FDOOH UR1

FDO3H UR1 STATUS
FDO6H UR2
FDO9H UR2 STATUS
FDOCH UP1
FDOFH UP1

FD12H upP2
FD15H upP2

FD18H uL1

FD1BH UL1 STATUS
FD1EH ucC1 IN
FD21H ucC1 STATUS
FD24H ucC1 ouTt

< Note> Please refer to Addition 3.

Addition 1

If you do not want beep sound at the time of key entry, you can neglect this function by
the command similar to Cs2-BASIC.
Enter the following command.

A>BEEP_OFF)
In order to return to beep sound mode, enter the following command.

A>BEEPLON)

Addition 2

In order to do the smooth key entry under the CP/M system, the key buffer exists in the
BIOS.

The key buffer is 40 characters in total.

The following 2 operations reset the key buffer.

1) CCP re-boot (warm boot) is executed
2) BREAK key is pressed (CTRL-C code is set in the buffer after the key buffer re-set)

Addition 3

Once you specify the printer output under the CP/M system, the system goes to the end-
less loop until it receives the printer ready signal. Therefore, please confirm if the printer is

connected properly and on line to the system. If your system configuration does not have
printer, and the printer command is specified by mistake, please be careful that the system
goes to the endless loop. In this case make CPU BOX power off and on, or press the RESET
button on the back side of CPU BOX in order to activate CP/M.

10

CP/M°

OPERATING SYSTEM
MANUAL

DIGITAL RESEARCH"

P.O. Box 579
Pacific Grove, California 93950

COPYRIGHT

Copyright © 1976, 1977, 1978, 1979, and 1982 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publica-
tion and to make changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. MP/M, MAC, and SID are trade-
marks of Digital Research. Z-80 is a trademark of Zilog, Inc.

First Printing: July 1982

CONTENTS

CP/M FEATURES AND FACILITIES

1.1 Introductioniiiiir ittt it it i e
1.2 Functional Descriptioncuiiiiiiiiiiiiin i,
1.2.1 General Command Structurecovvinivinnnn.
1.2.2 File Referencescouuuiiiiiiiiineriinniinnnennnns
1.3 Switching Diskscooiiiiiii i e e
1.4 Built-in Commands. ««.vvurtunen vttt ittt e e e,
1.4.1 ERA it i i i ittt e et e e e
1.4.2 IR ottt i e e
1.4.3 REN ittt i e e et
1.4.4 SAVE L.ttt e e
1.4.5 TYPE (o i i i i et et e e e
1.4.6 USER ¢ttt ettt ettt
1.5 Line Editing and Output Controlccoiiiina....
1.6 Transient Commandsvviiiiieinintineinnieennennennns
1.6.1 ST AT ottt e e e e e e
1.6.1 ASM it e e e e e e e
1.6.3 LOAD .ttt ittt e e e e e
1.6.4 PIP ottt e e
1.6.5 ED ittt ittt i e e e e e
1.6.6 SYSGEN ittt e e e e
1.6.7 SUBMIT &ttt ittt ettt et e ettt
1.6.8 DUMP ..t ettt ettt e
1.6.9 MOV CPM i i e et
1.7 BDOS Error Messagesvviiiniiiiiiniin e iiiinieeeneenennns
1.8 Operation of CP/Monthe MDS,

2.1 Introduction to ED ..ottt i e e e
2.1.1 ED Operationvuuuiniiiiiiiiieiiiiiiineeneennnn.
2.1.2 Text Transfer Functionscciiiiiiiininnnnn..
2.1.3 Memory Buffer Organization
2.1.4 Line Numbers and ED Start Upcooivinnn,
2.1.5 Memory Buffer Operationcooiiiiiiiat,
2.1.6 Command Stringsc.oveiinriurnnennneennnreenneennnn
2.1.7 Text Search and Alterationccuviiini....
2.1.8 Source Librariesciiiiiiiiii i i i
2.1.9 Repetitive Command Execution,
2.2 ED Error Conditions ...vveeeetneeiiereneetnneennneeeneeennanas
2.3 Control Characters and Commandsccciviieeeeennnnn..

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

O O ®P®O®IO OO U W W W

W NNDNDNDNDN M
O VNN G kWO G O

33

33
33
35
35
36
37
38
39
42
42
43
44

CP/M ASSEMBLERcocoiiiiiiiiii 47

3.1 Introductioniiiiiiii e e 47
3.2 Program Formatc.ciiiiiiiiiiiiii i i e 48
3.3 Formingthe Operandci i, 49
3.3.1 Labels ..ot 50
3.3.2 Numeric Constantsooveiiiiiiiieneeiinneneennnn. 50
3.33 Reserved Words ...coviiiiiiiiiii ittt 50
3.34 String Constantsooviiiiiiiiin it i 51
3.3.5 Arithmetic and Logical Operators 52
3.3.6 Precedence of Operatorsc.c.cvvviievninnnnnnn... 52
3.4 Assembler Directivescoiiiiiiiiiii i e 53
341 The ORG Directive ...vuiviiriiriiiin it iieieenennnns 54
342 The END Directiveuvieeiiiiiiiineeeeiiiiieaeeennns 54
343 TheEQU Directiveuvviirenrininrneenenneennennnns 55
34.4 The SET Directivecviiiiiinininiiiininnenaenns 55
3.4.5 The IF and ENDIF Directivescvveiiiiiiiieneeennnn. 56
346 The DB Directiveouviiiiiiiiiiiiiieiiiiiaeeneennns 57
347 The DW Directivecvuiviiiiiiiiniin it iieiinennnnnns 57
348 The DS Directivecvviviiniiniieiineieieeneenannns 57
3.5 Operation Codescovviiiiiiiiiiiiiiiiiiiiii i, 58
3.5.1 Jumps, Calls, and Returnscoooiiiiiiiin.t, 58
3.5.2 Immediate Operand Instructionso.. 59
3.5.3 Increment and Decrement Instructions 60
3.5.4 Data Movement Instructionsc.civviiiinnen 60
3.5.5 Arithmetic Logic Unit Operationsc.cocoiviine. 61
3.56 Control Instructionscciviiiiiiiniininenennns 62
3.6 Error Messagesc.ciiuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieea 62
3.7 A Sample Session ... e e 63
CP/M DYNAMIC DEBUGGING TOOLcceee 69
4.1 INtrodUuCtionvvviiiieee ittt ittt ettt e, 69
4.2 DDT Commands ...uvuirenrinetnrunerneeneeneseeeneenesnnennens 71
4.2.1 The A (Assembly) Commandcoiiinen, 71
4.2.2 The D (Display) Commandcccoviiiiiniiennnnen.. 72
423 TheF (Fill) Commandcoiiiiiiiiininnnnnnn.. 72
424 TheG(Go)Commandcovviiiineeiiiinnenennnnnns 72
4.2.5 TheI(Input) Commandcoiiiiiiiiiiiennnn. 73
426 TheL (List) Commandcccvviiiiiieiieennnnnnnnennn 74
427 The M(Move) Commandcoiviiiiinnnennnnnn. 74
428 TheR (Read) Commandcciiiiiiiiiinnnennnn. 74
429 TheS(Set) Commandccoiiiiiiiiniiinnnnnnnnnn. 75
4210 The T (Trace) Commandccovviiiiiinnnnnnnnn. 75
4211 The U (Untrace) Commandccoiviiiinenennnn. 76
4.2.12 The X (Examine) Commandccoviiiiinnnnennnn. 76
4.3 Implementation Notesc.ooiiiiiiiiiiiiiiiiiiiiiiinn 77
44 AnExample ... 78
CP/M 2 SYSTEM INTERFACE ... 89
5.1 Introductionoviiviiniiii ittt i it ittt e 89
5.2 Operating System Call Conventionsc.coviiiiuininennn, 91
5.3 A Sample File-to-File Copy Program 110
5.4 A Sample File Dump Utilityccciiiiiiiiiiiiiiiiiiinnn 113
5.5 A Sample Random Access Program PP 117
5.6 System Function Summaryoiiiiiiiiiiiiiiiii e 124

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

6 CP/M ALTERATION ... 127

6.1 INtroducCtionuvurureerernenererrerneeeiiiienenneenns 127
6.2 First Level System Regenerationcovvviiiiinnennnnnn.. 128
6.3 Second Level System Generationc.coviiininivnnnn... 131
6.4 Sample GETSYS and PUTSYS Program 134
6.5 Diskette Organizationcccveiiiiiiiiiiiiiiiiiiienennn. 136
6.6 The BIOS Entry Pointsoouuieiiiiiiiii ... 137
6.7 ASample BIOS i 143
6.8 A Sample Cold Start Loaderccooiviiiiiiiinininn.... 143
6.9 Reserved Locations in Page Zerocooviriiiiinnnnnnnnnn. 144
6.10 Disk Parameter Tables i, . 145
6.11 The DISKDEF Macro Libraryccciiiiiiiiiiiiiiiiininnnn. 148
6.12 Sector Blocking and Deblockingcccciiiiiiiina... . 152
APPENDIXES
A The MDS Basic I/O System (BIOS)cccoiviiiiiivnninn. 153
B A Skeletal CBIOSiiiiiiiiiiiii it 175
C A Skeletal GETSYS/PUTSYS Programcccovvvivvinnnn. 187
D The MDS-800 Cold Start Loader for CPIM 2 191
E A Skeletal Cold Start Loaderccviiiiinn... 197
F CP/M Disk Definition Libraryo i, 201
G Blocking and Deblocking Algorithms 209
H Glossary ...vvviiiiiiiiiiiiiiiiiiiiiii ittt nnnnnn. 219
I CPIM MeESSaBES v ivvet it iineeennenierennneennseeneennnnnns 235
INDEX oo 245

2.1 Overall ED Operationc.cueiiiiiiiiitennniiiiieerennnnnnneenns 34
2.2 Memory Buffer Organizationcoiiiiiiiiiiiiniinnnennn.. 34
2.3 Logical Organization of Memory Buffer 36

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M Features and
Facilities

1.1 Introduction

CP/M is a monitor control program for microcomputer system development that uses
floppy disks or Winchester hard disks for backup storage.Using a computer system based
upon Intel’s 8080 microcomputer, CP/M provides a general environment for program
construction, storage, and editing, along with assembly and program check-out facilities.
An important feature of CP/M is that it can be easily altered to execute with any
computer configuration that uses an Intel 8080 (or Zilog Z-80) Central Processing Unit
and has at least 20K bytes of main memory with up to 16 diskette drives. A detailed
discussion of the modifications required for any particular hardware environment is
given in Chapter 6. Although the standard Digital Research version operates on a
single-density Intel MDS 800, several different hardware manufacturers support their
own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a comprehensive file
management package. The file subsystem supports a named file structure, allowing
dynamic allocation of file space as well as sequential and random file access. Using this file
system, a large number of programs can be stored in both source and machine-
executable form.

CP/M 2 is a high-performance, single-console operating system that uses table-driven
techniques to allow field reconfiguration to match a wide variety of disk capacities. All
fundamental file restrictions are removed, maintaining upward compatibility from pre-
vious versions of release 1. Features of CP/M 2 include field specification of one to sixteen
logical drives, each containing up to eight megabytes. Any particular file can reach the full
drive size with the capability of expanding to thirty-two megabytes in future releases.
The directory size can be field-configured to contain any reasonable number of entries,
and each file is optionally tagged with read/only and system attributes. Users of CP/M 2
are physically separated by user numbers, with facilities for file copy operations from one
user area to another. Powerful relative-record random access functions are present in
CP/M 2 that provide direct access to any of the 65536 records of an eight-megabyte file.

CP/M also supports a powerful context editor, Intel-compatible assembler, and
debugger subsystems. Optional software includes a powerful Intel-compatible macro
assembler, symbolic debugger, along with various high-level languages. When coupled

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

with CP/M’s Console Command Processor, the resulting facilities equal or excel similar
large computer facilities.
CP/M is logically divided into several distinct parts:

BIOS Basic /O System (hardware-dependent)
BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette drives
and to interface standard peripherals (teletype, CRT, paper tape reader/punch, and
user-defined peripherals). They can be tailored by the user for any particular hardware
environment by “patching” this portion of CP/M. The BDOS provides disk management
by controlling one or more disk drives containing independent file directories. The BDOS
implements disk allocation strategies that provide fully dynamic file construction while
minimizing head movement across the disk during access. The BDOS has entry points
that include the following primitive operations, which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record to a particular file.

SELECT Select a particular disk drive for further operations.

The CCP provides a symbolic interface between the user’s consoie and the remainder
of the CP/M system. The CCP reads the console device and processes commands, which
include listing the file directory, printing the contents of files, and controlling the
operation of transient programs, such as assemblers, editors, and debuggers. The stand-
ard commands that are available in the CCP are listed in Section 1.2.1.

The last segment of CP/M is the area called the Transient Program Area (TPA). The
TPA holds programs that are loaded from the disk under command of the CCP. During
program editing, for example, the TPA holds the CP/M text editor machine code and data
areas. Similarly, programs created under CP/M can be checked out by loading and
executing these programs in the TPA.

Any or all of the CP/M component subsystems can be “overlaid” by an executing
program. That is, once a user’s program is loaded into the TPA, the CCP, BDOS, and
BIOS areas can be used as the program’s data area. A “bootstrap” loader is programmati-
cally accessible whenever the BIOS portion is not overlaid; thus, the user program need
only branch to the bootstrap loader at the end of execution and the complete CP/M

monitor is reloaded from disk.
The CP/M operating system is partitioned into distinct modules, including the BIOS

portion that defines the hardware environment in which CP/M is executing. Thus, the
standard system is easily modified to any nonstandard environment by changing the
peripheral drivers to handle the custom system.

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.2 Functional Description

The user interacts with CP/M primarily through the CCP, which reads and interprets
commands entered through the console. In general, the CCP addresses one of several
disks that are on-line (the standard system addresses up to sixteen different disk drives).
These disk drives are labeled A through P. A disk is “logged in” if the CCP is currently
addressing the disk. To clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol “>" indicating
that the CCP is ready for another command. Upon initial start-up, the CP/M system is
brought in from disk A, and the CCP displays the message

CP/M VER m.m

where m.m is the CP/M version number. All CP/M systems are initially set to operatein a
20K memory space, but can be easily reconfigured to fit any memory size on the host
system (see Section 1.6.9). Following system sign-on, CP/M automatically logs in disk A,
prompts the user with the symbol “A>" (indicating that CP/M is currently addressing
disk “A”), and waits for a command. The commands are implemented at two levels:
built-in commands and transient commands.

1.2.1 General Command Structure

Built-in commands are a part of the CCP program itself, while transient commands
are loaded into the TPA from disk and executed. The built-in commands are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.

Most of the commands reference a particular file or group of files. The form of a file
reference is specified below.

1.2.2 File References

A file reference identifies a particular file or group of files on a particular disk attached
to CP/M. These file references are either “unambiguous” (ufn) or “ambiguous” (afn). An
unambiguous file reference uniquely identifies a single file, while an ambiguous file
reference is satisfied by a number of different files.

File references consist of two parts: the primary filename and the filetype. Although
the filetype is optional, it usually is generic; that is, the filetype “ASM,” for example, is
used to denote that the file is an assembly language source file, while the primary

filename distinguishes each particular source file. The two names are separated by a“.”,
as shown below:

filename.typ

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

where filename is the primary filename of eight characters or less, and typ is the filetype
of no more than three characters. As mentioned above, the name

filename

is also allowed and is equivalent to a filetype consisting of three blanks. The characters
used in specifying an unambiguous file reference cannot contain any of the special
characters

<>, =2% 1% () /N

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern matching. The
form of an ambiguous file reference is similar to an unambiguous reference, except the
symbol “?” can be interspersed throughout the primary and secondary names. In various
commands throughout CP/M, the “?” symbol matches any character of a file namein the
“?” position. Thus, the ambiguous reference

X?Z.C?M
is satisfied by the unambiguous file names

XYZ.COM
and

X3Z.CAM
Note that the ambiguous reference

* *

is equivalent to the ambiguous file reference

2?99?7?27?°?.277

while
filename.*

and

*typ

are abbreviations for

filename.???
and

respectively. As an example,

A>DIR *.*

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

is interpreted by the CCP as a command to list the names of all disk files in the directory,
while

A>DIR X.Y

searches only for a file by the name X.Y. Similarly, the command
A>DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk that satisfy this ambiguous

reference.
The following file names are valid unambiguous file references:

X XYz GAMMA
X.Y XYZ.COM GAMMA 1
As an added convenience, the programmer can generally specify the disk drive name

along with the file name. In this case, the drive name is given as a letter A through P
followed by a colon (:). The specified drive is then “logged in” before the file operation
occurs. Thus, the following are valid file names with disk name prefixes:

AX.Y B:XYZ C:GAMMA

P:XYZ.COM B:X. A?M C:*. ASM

All alphabetic lower case letters in file and drive names are translated to upper case when
they are processed by the CCP.

1.3 Switching Disks

The operator can switch the currently logged disk by typing the disk drive name (A
through P) followed by a colon (:) when the CCP is waiting for console input. Thus, the
sequence of prompts and commands below can occur after the CP/M system is loaded
from disk A:

CP/M VER 2.2

A>DIR List all files on disk A.
A: SAMPLE ASM SAMPLE PRN

A>B: Switch to disk B.
B>DIR *. ASM List all “ASM” files on B.
B: DUMP ASM FILES ASM

B>A: Switch back to A.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

1.4 Built-in Commands

The file and device reference forms described can now be used to fully specify the
structure of the built-in commands. The user should assume the following abbreviations
in the description below:

ufn unambiguous file reference

afn ambiguous file reference

Recall that the CCP always translates lower case characters to upper case characters
internally. Thus, lower case alphabetics are treated as if they are upper case in command
names and file references.

14.1 ERA afm

The ERA (erase) command removes files from the currently logged in disk (i.e., the
disk name currently prompted by CP/M preceding the “>"). The files that are erased are
those that satisfy the ambiguous file reference afn. The following examples illustrate the
use of ERA:

ERA X.Y The file named X.Y on the currently logged disk is
removed from the disk directory and the space is
returned.

ERA X.* All files with primary name X are removed from the
current disk.

ERA *. ASM All files with secondary name ASM are removed
from the current disk.

ERA X?Y.C?M All files on the current disk that satisfy the ambigu-

ous reference X?Y.C?M are deleted.

ERA *.* Erase all files on the current disk (in this case the
CCP prompts the console with the message

ALL FILES (Y/N)?

that requires a Y response before files are actually
removed).

ERA B:*.PRN All files on drive B that satisfy the ambiguous refer-

the currently logged disk.

14.2 DIR afm

The DIR (directory) command causes the names of all files that satisfy the ambiguous
file name afn to be listed at the console device. As a special case, the command

DIR

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

lists the files on the currently logged disk (the command “DIR” is equivalent to the
command “DIR *.*”). Valid DIR commands are

DIR X.Y

DIR X?Z.C?M

DIR ?2.Y

Similar to other CCP commands, the afn can be preceded by a drive name. The

following DIR commands cause the selected drive to be addressed before the directory
search takes place.

DIR B:

DIR B:X.Y

DIR B:*. A?M

If no files on the selected diskette satisfy the directory request, the message “NO
FILE” is typed at the console.

1.4.3 REN ufnl=ufm2

The REN (rename) command allows the user to change the names of files on disk. The
file satisfying ufn2 is changed to ufn1. The currently logged disk is assumed to contain
the file to rename (ufn2). The user can also type a left-directed arrow instead of the equal
sign if the console supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.
REN XYZ.COM=XYZ.XXX The file XYZ.XXX is changed to XYZ.COM.

The operator precedes either ufnl or ufn2 (or both) by an optional drive address. If
ufnl is preceded by a drive name, then ufn2 is assumed to exist on the same drive.
Similarly, if ufn2 is preceded by a drive name, then ufn1 is assumed to exist on thatdrive
as well. The same drive must be specified in both cases if both ufn1 and ufn2 are preceded
by drive names. The REN commands below illustrate this format.

REN A:X.ASM=Y.ASM The file Y.ASM is changed to X.ASM on drive
A.

REN B:ZAP.BAS=ZOT.BAS The file ZOT.BAS is changed to ZAP.BAS on
drive B.

REN B:A.ASM=B:A.BAK The file A.BAKisrenamed to A.ASM ondrive
B.

If ufnl is already present, the REN command will respond with the error “FILE
EXISTS” and not perform the change. If ufn2 does not exist on the specified diskette, the
message “NO FILE” is printed at the console.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

144 SAVE nufm

The SAVE command places n pages (256-byte blocks) onto disk from the TPA and
names this file ufn. In the CP/M distribution system, the TPA starts at 100H (hexadec-
imal) which is the second page of memory. The SAVE command must specify 2 pages of
memory if the user’s program occupies the area from 100H through 2FFH. The machine
code file can be subsequently loaded and executed. Examples are

SAVE 3 X.COM Copies 100H through 3FFH to X.COM.

SAVE 40 Q Copies 100H through 28FFH to Q (note that 28 is
the page count in 28FFH, and that 28H = 2*16+8 =
40 decimal).

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the ufn portion of the command, as
shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (100H through 0AFFH) to the file
ZOT.COM on drive B.

14.5 TYPE ufm

The TYPE command displays the contents of the ASCII source file ufn on the
currently logged disk at the console device. Valid TYPE commands are
TYPE X.Y
TYPE X.PLM
TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab positions are set at
every eighth column. The ufn can also reference a drive name.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

14.6 USER n

The USER command allows maintenance of separate files in the same directory and
takes the form

USER n

where n is an integer value in the range 0 to 15. On cold start, the operator is automati-
cally “logged” into user area number 0, which is compatible with standard CP/M 1
directories. The operator may issue the USER command at any time to move to another
logical area within the same directory. Drives that are logged-in while addressing one
user number are automatically active when the operator moves to another; a user
number is simply a prefix that accesses particular directory entries on the active disks.

. The active user number is maintained until changed by a subsequent USER command,
or until a cold start when user 0 is again assumed.

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.5 Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines.

ctl-C CP/M system reboot when typed at start of line.

ctl-E Physical end of line: carriage is returned, but line is not sent until
the carriage return key is depressed.

ctl-H Backspace one character position.

ctl-J Terminate current input (line feed).

ctl-M Terminate current input (carriage return).

ctl-R Retype current command line: types a“clean line” following charac-
ter deletion with rubouts.

ctl-U Delete the entire line typed at the console.

ctl-X Same as ctl-U.

ctl-Z End input from the console (used in PIP and ED).

rub/del Delete and echo the last character typed at the console.

The control functions ctl-P and ctl-S affect console output.

ctl-P Copy all subsequent console output to the currently assigned list
device (see Section 1.6.1). Output is sent to the list device and the
console device until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution and out-
put continue when the next character is typed at the console (e.g.,
another ctl-S). This feature stops output on high speed consoles,
such as CRT’s, in order to view a segment of output before
continuing.

The ctl-key sequences are obtained by depressing the control and letter keys simul-
taneously. Further, CCP command lines are generally up to 255 characters in length; they
are not acted upon until the carriage return key is typed.

1.6 Transient Commands

Transient commands are loaded from the currently logged disk and executed in the
TPA. The transient commands for execution under the CCP are below. Additional
functions are easily defined by the user (see Section 1.6.3).

STAT List the number of bytes of storage remaining on the currently
logged disk, provide statistical information about particular files,
and display or alter device assignment.

ASM Load the CP/M assembler and assemble the specified program from
disk.
LOAD Load the file in Intel “"HEX” machine code format and produce a file

in machine executable form that can be loaded into the TPA (this
loaded program becomes a new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

PIP Load the Peripheral Interchange Program for subsequent disk file
and peripheral transfer operations.

ED Load and execute the CP/M text editor program.

SYSGEN Create a new CP/M system diskette.

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

MOVCPM Regenerate the CP/M system for a particular memory size.
Transient commands are specified in the same manner as built-in commands, and addi-
tional commands are easily defined by the user. For convenience, the transient command

can be preceded by a drive name that causes the transient to be loaded from the specified
drive into the TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily “log in” drive B for the source of the STAT transient, and
then return to the original logged disk for subsequent processing.
The basic transient commands are listed in detail below.

1.6.1 STAT

The STAT command provides general statistical information about file storage and
device assignment. It is initiated by typing one of the following forms:

STAT
STAT “command line”

Special forms of the “command line” allow the current device assignment to be examined
and altered. The various command lines that can be specified are shown, with an
explanation of each form to the right.

STAT If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

d: R/W, SPACE: nnnK
or

d: R/0O, SPACE: nnnK

for each active drive d:, where R/W indicates the
drive can be read or written, and R/O indicates the
drive is read only (a drive becomes R/O by explicitly
setting it to read only, as shown below, or by inad-
vertently changing diskettes without performing a
warm start). The space remaining on the diskette in
drive d: is given in kilobytes by nnn.

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

STAT d:

STAT afn

STATd: afn

STAT d:=R/O

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com-
mand “STAT B:” could be issued while logged into
drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of files to be
scanned by STAT. The files that satisfy afn are
listed in alphabetical order, with storage require-
ments for each file under the heading

RECS BYTS EX D:FILENAME.TYP
rrrr bbbK ee d:filename.typ

where rrrr is the number of 128-byte records allo-
cated to the file, bbb is the number of kilobytes
allocated to the file (bbb=rrrr*128/1024), ee is the
number of 16K extensions (ee=bbb/16), d is the
drive name containing the file (A...P), filename is
the (up to) eight-character primary filename, and
typ is the (up to) three-character filetype. After
listing the individual files, the storage usage is
summarized.

The drive name can be given ahead of the afn. The
specified drive s first selected, and the form “STAT
afn” is executed.

This form sets the drive given by d to read only,
remaining in effect until the next warm or cold
start takes place. When a disk is read only, the
message

BDOS ERR ON d: READ ONLY

will appear if there is an attempt to write to the
read-only disk d:. CP/M waits until a key is
depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command allows control over the physical to logical device assignment (see
the IOBYTE function described in Chapters 5 and 6). There are four logical peripheral
devices that are, at any particular instant, each assigned one of several physical peripheral

devices. The four logical devices are

CON:

RDR:
PUN:
LST:

The system console device (used by CCP for communication with
the operator)

The paper tape reader device
The paper tape punch device

The output list device

The actual devices attached to any particular computer system are driven by subrou-
tines in the BIOS portion of CP/M. Thus, the logical RDR: device, for example, could

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

actually be a high speed reader, teletype reader, or cassette tape. To allow some flexibility
in device naming and assignment, several physical devices are defined below:

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:, output goes to current
LST: device)

ucCHt: User-defined console

PTR: Paper tape reader (high speed reader)

URT: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

UP1: User-defined punch #1

uP2: User-defined punch #2

LPT: Line printer

UL1: User-defined list device #1

It is emphasized that the physical device names may or may not actually correspond to
devices that the names imply. That is, the PTP: device may be implemented as a cassette
write operation if the user wishes. The exact correspondence and driving subroutine is
defined in the BIOS portion of CP/M. In the standard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command

STAT VAL:
produces a summary of the available status commands, resulting in the output

Temp R/O Disk d:$R/O

Set Indicator: filename.typ $R/0O $R/W $SYS $DIR
Disk Status: DSK: d:DSK

lobyte Assign:

which gives an instant summary of the possible STAT commands and shows the permiss-
ible logical-to-physical device assignments:

CON: = TTY: CRT: BAT: UC1:
RDR: = TTY: PTR: UR1: UR2:
PUN: = TTY: PTP: UP1: UP2:
LST: = TTY: CRT: LPT: UL1:

The logical device to the left takes any of the four physical assignments shown to the
right. The current logical to physical mapping is displayed by typing the command

STAT DEV:

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

producing a list of each logical device to the left and the current corresponding physical
device to the right. For example, the list might appear as

CON: = CRT:
RDR: = URT:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment is changed by typinga STAT command
of the form

STAT Id1 = pd1, 1d2 =pd2, ..., |dn = pdn

where 1d1 through ldn are logical device names and pd1 through pdn are compatible
physical device names (i.e., Idi and pdi appear on the same line in the “VAL:” command
shown above). Valid STAT commands that change the current logical to physical device
assignments are

STAT CON:=CRT:
STAT PUN: = TTY;, LST:=LPT:, RDR:=TTY:

The command form
STAT d:filename.typ $S

where “d:” is an optional drive name and “filename.typ” is an unambiguous or ambiguous
file name, produces the output display format

Size Recs Bytes Ext Acc
48 48 6k 1 R/O A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
65536 128 16k 2 R/W A:X.DAT

where the $S parameter causes the “Size” field to be displayed. (Without the $S, the Size
field is skipped, but the remaining fields are displayed.) The Size field lists the virtual file
size in records, while the “Recs” field sums the number of virtual records in each extent.
For files constructed sequentially, the Size and Recs fields are identical. The “Bytes” field
lists the actual number of bytes allocated to the corresponding file. The minimum
allocation unit is determined at configuration time; thus, the number of bytes corre-
sponds to the record count plus the remaining unused space in the last allocated block for
sequential files. Random access files are given data areas only when written, so the Bytes
field contains the only accurate allocation figure. In the case of random access, the Size
field gives the logical end-of-file record position and the Recs field counts the logical
records of each extent. (Each of these extents, however, may contain unallocated “holes”
even though they are added into the record count.) The “Ext” field counts the number of
physical extents allocated to the file. The Ext count corresponds to the number of
directory entries given to the file. Depending on allocation size, there can be up to 128K
bytes (8 logical extents) directly addressed by a single directory entry. (In a special case,
there are actually 256K bytes that can be directly addressed by a physical extent.)
The Acc field gives the R/O or R/W file indicator that is changed using the commands
shown. Similarly, the parentheses shown about the PIP.COM filename indicate that it

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

has the “system” indicator set, so that it will not be listed in DIR commands. The four
command forms

STAT d:filename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator places the file (or set of
files) in a read-only status until changed by a subsequent STAT command. The R/O status
is recorded in the directory with the file so that it remains R/O through intervening cold
start operations. The R/W indicator places the file in a permanent read/write status. The
SYS indicator attaches the system indicator to the file, while the DIR command removes
the system indicator. The “filename.typ” may be ambiguous or unambiguous, but files
whose attributes are changed are listed at the console when the change occurs. The drive
name denoted by “d:” is optional.

When a file is marked R/O, subsequent attempts to erase or write into the file result in
a terminal BDOS message

BDOS Err on d: File R/O

The BDOS waits for a console input before performing a subsequent warm start (a
“return” is sufficient). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by “d:” that is in the range A:, B:, ..., P:. The
drive characteristics are listed in the format

d: Drive Characteristics
65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks
where “d:” is the selected drive, followed by the total record capacity (65536 is an
eight-megabyte drive), followed by the total capacity listed in kilobytes. The directory
size is listed next, followed by the “checked” entries. The number of checked entries is
usually identical to the directory size for removable media, because this mechanism is
used to detect changed media during CP/M operation without an intervening warm start.
For fixed media, the number is usually zero, because the media are not changed without at
- least a cold or warm start. The number of records per extent determines the addressing
capacity of each directory entry (1024 times 128 bytes, or 128K in the previous example).
The number of records per block shows the basic allocation size (in the example, 128

records/block times 128 bytes per record, or 16K bytes per block). The listing is then
followed by the number of physical sectors per track and the number of reserved tracks.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

For logical drives that share the same physical disk, the number of reserved tracks can be
quite large because this mechanism is used to skip lower-numbered disk areas allocated to
other logical disks. The command form

STAT DSK:

produces a drive characteristics table for all currently active drives. The final STAT
command form is

STAT USR:

which produces a list of the user numbers that have files on the currently addressed disk.
The display format is

Active User: 0
Active Files: 013

where the first line lists the currently addressed user number, as set by the last CCP
USER command, followed by a list of user numbers scanned from the current directory.
In this case, the active user number is 0 (default at cold start), with three user numbers
that have active files on the current disk. The operator can subsequently examine the
directories of the other user numbers by logging-in with USER 1 or USER 3 commands,
followed by a DIR command at the CCP level.

1.6.2 ASM ufn

The ASM command loads and executes the CP/M 8080 assembler. The ufn specifies a
source file containing assembly language statements where the filetype is assumed to be
ASM and is not specified. The following ASM commands are valid:

ASM X
ASM GAMMA

The two-pass assembler is automatically executed. Assembly errors that occur during the
second pass are printed at the console.
The assembler produces a file

X.PRN

where X is the primary name specified in the ASM command. The PRN file contains a
listing of the source program (with imbedded tab characters if present in the source
program), along with the machine code generated for each statement and diagnostic error
messages, if any. The PRN file is listed at the console using the TYPE command, or sent to
a peripheral device using PIP (see Section 1.6.4). The user should note that the PRN file
contains the original source program, augmented by miscellaneous assembly information
in the leftmost 16 columns (program addresses and hexadecimal machine code, for
example). The PRN file serves as a backup for the original source file. If the source file is
accidentally removed or destroyed, the PRN file can be edited (see Chapter 2) by remov-
ing the leftmost 16 characters of each line. This is done by issuing a single editor “macro”
command. The resulting file is identical to the original source file and can be renamed
(REN) from PRN to ASM for subsequent editing and assembly. The file

X.HEX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

is also produced, which contains 8080 machine language in Intel “"HEX” format suitable
for subsequent loading and execution (see Section 1.6.3). For complete details of CP/M’s
assembly language program, see Chapter 3.

The source file for assembly is taken from an alternate disk by prefixing the assembly
language file name by a disk drive name. The command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes the source program
ALPHA.ASM on drive B. The HEX and PRN files are also placed on drive B in this case.

1.6.3 LOAD ufn

The LOAD command reads the file ufn, which is assumed to contain “HEX” format
machine code, and produces a memory image file that can subsequently be executed. The
file name ufn is assumed to be of the form

X.HEX

and only the filename X need be specified in the command. The LOAD command creates a
file named

X.COM

that marks it as containing machine executable code. The file is actually loaded into
memory and executed when the user types the filename X immediately after the prompt-
ing character “>" printed by the CCP.

Generally the CCP reads the filename X following the prompting character and looks
for a built-in function name. If no function name is found, the CCP searches the system
disk directory for a file by the name

X.COM

If found, the machine code is loaded into the TPA, and the program executes. Thus, the
user need only LOAD a hex file once; it can be subsequently executed any number of
times by typing the primary name. In this way the user can “invent” new commands in the
CCP. (Initialized disks contain the transient commands as COM files, which are deleted at
the user’s option.) The operation takes place on an alternate drive if the file name is
prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates
upon drive B after execution begins.

The user should note that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example) that
begin at 100H of the TPA. The addresses in the hex records must be in ascending order;
gaps in unfilled memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP/M standard “COM”
files that operate in the TPA. Programs that occupy regions of memory other than the
TPA are loaded under DDT.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.64 PIP

PIP is the CP/M Peripheral Interchange Program that implements the basic media
conversion operations necessary to load, print, punch, copy, and combine disk files. The
PIP program is initiated by typing one of the following forms:

(1) PIP
(2) PIP ‘command line’

In both cases PIP is loaded into the TPA and executed. In form (1), PIP reads command
lines directly from the console, prompted with the “*” character, until an empty command
line is typed (i.e., a single carriage return is issued by the operator). Each successive
command line causes some media conversion to take place according to the rules shown
below. Form (2) of the PIP command is equivalent to the first, except that the single
command line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines. The
form of each command line is

destination = source#1, source#2, ... , source#n

where “destination” is the file or peripheral device to receive the data and “source#1, ...,
source#n” is a series of one or more files or devices that are copied from left to right to the

destination.
When multiple files are given in the command line (i.e., n > 1), the individual files are

assumed to contain ASCllI characters, with an assumed CP/M end-of-file character (ctl-Z)
at the end of each file (see the O parameter to override this assumption). Lower case
ASCII alphabetics are internally translated to upper case to be consistent with CP/M file
and device name conventions. Finally, the total command line length cannot exceed 255
characters (ctl-E can be used to force a physical carriage return for lines that exceed the
console width).

The destination and source elements are unambiguous references to CP/M source
files with or without a preceding disk drive name. That is, any file can be referenced with a
preceding drive name (A: through P:) that defines the particular drive where the file may
be obtained or stored. When the drive name is not included, the currently logged disk is
assumed. The destination file can also appear as one or more of the source files, in which
case the source file is not altered until the entire concatenation is complete. If it already
exists, the destination file is removed if the command line is properly formed (it is not
removed if an error condition arises). The following command lines (with explanations to
the right) are valid as input to PIP:

X=Y Copy to file X from file Y, where X
and Y are unambiguous file names;
Y remains unchanged.

X=Y,Z Concatenate files Y and Z and copy
to file X, with Y and Z unchanged.
X.ASM=Y .ASM,Z.ASM,FIN.ASM Create the file X.ASM from the

concatenation of the Y, Z, and FIN
files with type ASM.

NEW.ZOT=B:OLD.ZAP Move a copy of OLD.ZAP from
drive B to the currently logged
disk; name the file NEW.ZOT.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

B:A.U = B:B.V,A:C.W,D.X Concatenate file B.V from drive B
with C.W from drive A and D.X.
from the logged disk; create the file
A.U on drive B.

For convenience, PIP allows abbreviated commands for transferring files between
disk drives. The abbreviated forms are

PIP d:=afn

PIP d;:=d,:afn
PIP ufn =d,:
PIP dq:ufn = dy:

The first form copies all files from the currently logged disk that satisfy the afn to the
same files on drived (d= A ... P). The second form is equivalent to the first, where the
source for the copyisdrived, (d, = A ...P). The third form is equivalent to the command
“PIPd,:ufn=d,:ufn” that copies the file given by ufn fromdrive d, to the file ufn ondrived, :.

The fourth form is equivalent to the third, where the source disk is explicitly given by d,:.
The source and destination disks must be different in all of these cases. If an afn is

specified, PIP lists each ufn that satisfies the afn as it is being copied. If a file exists by the
same name as the destination file, it is removed on successful completion of the copy and
replaced by the copied file.

The following PIP commands give examples of valid disk-to-disk copy operations:

B:=*.COM Copy all files that have the secondary name
“COM” to drive B from the current drive.
A:=B:ZAP.* Copy all files that have the primary name
“ZAP” to drive A from drive B.
ZAP.ASM=B: Equivalent to ZAP.ASM=B:ZAP.ASM
B:ZOT.COM=A: Equivalent to B:ZOT.COM=A:ZOT.COM
B:=GAMMA.BAS Same as B.GAMMA.BAS=GAMMA.BAS
B:=A:GAMMA . BAS Same as B.GAMMA.BAS=A:GAMMA .BAS

PIP allows reference to physical and logical devices that are attached to the CP/M
system. The device names are the same as given under the STAT command, along witha
number of specially named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)
while the physical devices are

TTY: (console, reader, punch, or list)

CRT: (console, or list), UC1: (console)
PTR: (reader), UR1: (reader), UR2: (reader)
PTP: (punch), UP1: (punch), UP2: (punch)
LPT: (list), UL1: (list)

(The “BAT:” physical device is not included, since this assignment is used only toindicate
that the RDR: and LST: devices are used for console input/output.)

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The RDR, LST, PUN, and CON devices are all defined within the BIOS portion of
CP/M, and are easily altered for any particular I/O system. (The current physical device
mapping is defined by IOBYTE; see Chapter 6 for a discussion of this function). The
destination device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the LST: device
cannot be read).

The additional device names that can be used in PIP commands are

NUL: Send 40 “nulls” (ASCII 0s) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically at the end of all ASCII data transfers through
PIP).

INP: Special PIP input source that can be patched into the PIP program:

PIP gets the input data character-by-character by CALLing location
103H, with data returned in location 109H (parity bit must be zero).

OUT: Special PIP output destination that can be patched into the PIP
program: PIP CALLs location 106H with data in register C for each
character to transmit. The user should note that locations 109H
through 1FFH of the PIP memory image are not used and can be
replaced by special purpose drivers using DDT (see Chapter 4).

PRN: Same as LST: except that tabs are expanded at every eighth charac-
ter position, lines are numbered, and page ejects are inserted every
60 lines with an initial eject (same as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the
specific device is read until end-of-file (ctl-Z for ASCII files, and end-of-data for non-
ASCII disk files). Data from each device or file are concatenated from left to right until
the last data source has been read. The destination device or file is written using the data
from the source files, and an end-of-file character (ctl-Z) is appended to the result for
ASCII files. If the destination is a disk file, a temporary file is created ($$% secondary
name) that is changed to the actual file name only on successful completion of the copy.
Files with the extension “COM” are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the keyboard
(a return suffices). PIP will respond with the message “ABORTED” to indicate that the
operation has not been completed. If any operation is aborted, or if an error occurs during
processing, PIP removes any pending commands that were set up while using the
SUBMIT command.

PIP performs a special function if the destination is a disk file with type “HEX” (an Intel
hex-formatted machine code file), and the source is an external peripheral device, such as
a paper tape reader. In this case, the PIP program checks to ensure that the source file
contains a properly formed hex file, with legal hexadecimal values and checksum records.
When an invalid input record is found, PIP reports an error message at the console and
waits for corrective action. It is usually sufficient to open the reader and rerun a section of
the tape (pull the tape back about 20 inches). When the tape is ready for the reread, a
single carriage return is typed at the console, and PIP will attempt another read. If the
tape position cannot be properly read, the user continues the read (by typing a return
following the error message), and enters the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be entered from
the console if the source file is an RDR: device. In this case, the PIP program reads the
device and monitors the keyboard. If ctl-Z is typed at the keyboard the read operation is
terminated normally.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

Valid PIP commands are

PIP LST: = X.PRN Copy X.PRN to the LST device and

terminate the PIP program.

PIP Start PIP for a sequence of com-
mands (PIP prompts with “*”).
*CON:=X.ASM,Y.ASM,Z.ASM Concatenate three ASM files and
copy to the CON device.
*X.HEX=CON:Y.HEX,PTR: Create a HEX file by reading the
CON (until a ctl-Z is typed), fol-
lowed by data from Y.HEX and
PTR until a ctl-Z is encountered.
(carriage return) Single carriage return stops PIP.
PIP PUN:=NUL:,X.ASM,EOF: NUL: Send 40 nulls to the punch device;

copy the X.ASM file to the punch,
followed by an end-of-file (ctl-Z)
and 40 more null characters.

The user can also specify one or more PIP parameters, enclosed in left and right square
brackets, separated by zero or more blanks. Each parameter affects the copy operation,
and the enclosed list of parameters must immediately follow the affected file or device.
Generally, each parameter can be followed by an optional decimal integer value (the S and
Q parameters are exceptions). Valid PIP parameters are

B

Dn

20

Block mode transfer: data are buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer of data to a disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount of data that
can be buffered depends on the memory size of the host system (PIP
will issue an error message if the buffers overflow).

Delete characters that extend past column n in the transfer of data
to the destination from the character source. This parameter is
generally used to truncate long lines that are sent to a (narrow)
printer or console device.

Echo all transfer operations to the console as they are being
performed.

Filter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to insert
new form feeds.

Get File from user number n (n in the range 0-15).

HEX data transfer: all data are checked for proper Intel hex file
format. Nonessential characters between hex records are removed
during the copy operation. The console will be prompted for correc-
tive action in case errors occur.

Ignore “:00” records in the transfer of Intel hex format file (the I
parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Pn

Qstz

Sstz

Tn

W
V4

Add line numbers to each line transferred to the destination, start-
ing at one and incrementing by 1. Leading zeroes are suppressed,
and the number is followed by a colon. If N2 is specified, leading
zeroes are included and a tab is inserted following the number. The
tab is expanded if T is set.

Object file (non-ASCII) transfer: the normal CP/M end-of-file is
ignored.

Include page ejects at every n lines (with an initial page eject). If n =1
or is excluded altogether, page ejects occur every 60 lines. If the F
parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

Read system files.

Start copying from the source device when the string s (terminated
by ctl-Z) is encountered. The S and Q parameters can be used to
“abstract” a particular section of a file (such as a subroutine). The
start and quit strings are always included in the copy operation.

If the user selects form (2) of the PIP command, the CCP translates
strings following the S and Q parameters to upper case. Form (1) of
the PIP invocation does not perform the automatic upper case
translation.

(1) PIP
(2) PIP ‘command line’

Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

Translate lower case alphabetics to upper case during the copy
operation.

Verify that data have been copied correctly by rereading after the
write operation (the destination must be a disk file).

Write over R/O files without console interrogation.

Zero the parity bit on input for each ASCII character.

Valid PIP commands that specify parameters in the file transfer are

PIP X.ASM=B:[v] Copy X.ASM from drive B to the current
drive and verify that the data were properly
copied.

PIP LPT:=X.ASM[nt8u] Copy X.ASM to the LPT: device; number each

line, expand tabs to every eighth column, and
translate lower case alphabetics to upper case.

PIP PUN:=X.HEX]i],Y.ZOT[h] First copy X.HEX to the PUN: device and

ignore the trailing “:00” record in X.HEX;
continue the transfer of data by reading
Y.ZOT, which contains HEX records, includ-

ing any “:00” records it contains.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

PIP X.LIB = Y.ASM [sSUBRI:tz qJMP L3tz]
Copy from the file Y. ASM into the file X.LIB.
Start the copy when the string “SUBRI:"” has
been found, and quit copying after the string
“JMP L3” is encountered.

PIP PRN:=X.ASM[p50] Send X.ASM to the LST: device with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
The assumed parameter list for a PRN file is
nt8p60; p50 overrides the default value.

Under normal operation, PIP will not overwrite a file that is set to a permanent R/O
status. If an attempt is made to overwrite an R/O file, the prompt

DESTINATION FILE IS R/O, DELETE (Y/N)?
is issued. If the operator responds with the character “y” the file is overwritten. Other-
wise, the response

** NOT DELETED **

is issued, the file transfer is skipped, and PIP continues with the next operation in
sequence. To avoid the prompt and response in the case of R/O file overwrite, the
command line can include the W parameter

PIP A:=B:*.COM[W]

which copies all nonsystem files to the A drive from the B drive and overwrites any R/O
files in the process. If the operation involves several concatenated files, the W parameter
need only be included with the last file in the list, as in the example

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers if the R parameter is
included; otherwise, system files are not recognized. The command line

PIP ED.COM = B:ED.COMI[R]

for example, reads the ED.COM file from the B drive, even if it has been marked as an
R/O and system file. The system file attributes are copied, if present.

Downward compatibility with previous versions of CP/M is only maintained if the file
does not exceed one megabyte, no file attributes are set, and the file is created by user 0. If
compatibility is required with nonstandard (e.g., “double density”) versions of 1.4, it may
be necessary to select 1.4 compatibility mode when constructing the internal disk
parameter block. (See Chapter 6 and refer to Section 6.10, which describes BIOS
differences.)

Note: To copy files into another user area, PIP.COM must be located in that user area.
Follow the procedure shown below to make a copy of PIP.COM in another user area.

USER 0 Log-in user 0.

DDT PIP.COM (note PIP size s) Load PIP to memory.
GO : Return to CCP.
USER 3 Log-in user 3.

SAVE s PIP.COM

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where s is the integral number of memory “pages” (256-byte segments) occupied by PIP.
The number s can be determined when PIP.COM is loaded under DDT, by referring to
the value under the NEXT display. If, for example, the next available address is 1D00,
then PIP.COM requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and the
value of s is 28 in the subsequent save. Once PIP is copied in this manner, it can be copied
to another disk belonging to the same user number through normal PIP transfers.

1.6.5 ED ufm

The ED program is the CP/M system context editor that allows creation and alteration
of ASCII files in the CP/M environment. Complete details of operation are given in
Chapter 2. ED allows the operator to create and operate upon source files that are
organized as a sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line length (no
single line can exceed the size of the working memory) that is defined by the number of
characters typed between carriage returns. The ED program has a number of commands
for character string searching, replacement, and insertion that are useful in creation and
correction of programs or text files under CP/M. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 20K CP/M system), the file
size that can be edited is not limited, since data are easily “paged” through this work area.

If it does not exist, ED creates the specified source file and opens the file for access. If
the source file does exist (see the A command), the programmer “appends” data for
editing. The appended data can then be displayed, altered, and written from the work area
back to the disk (see the W command). Particular points in the program can be automati-
cally paged and located by context (see the N command), allowing easy access to particular
portions of a large file.

Given that the operator has typed

ED X.ASM

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file
(original file) is renamed to X.BAK, and the edited work file is renamed to X.ASM. Thus,
the X.BAK file contains the original (unedited) file, and the X.ASM file contains the newly

edited file. The operator can always return to the previous version of a file by removing
the most recent version and renaming the previous version. If the current X.ASM file has
been improperly edited, the sequence of commands below will reclaim the backup file.

DIR X.* Check to see that BAK file is available.
ERA X.ASM Erase most recent version.
REN X.ASM=X.BAK Rename the BAK file to ASM.

The operator can abort the edit at any point (reboot, power failure, ctl-C, or Q command)
without destroying the original file. In this case, the BAK file is not created and the
original file is always intact.

The ED program allows the user to edit the source on one disk and create the backup
file on.another disk. This form of the ED command is

ED ufn d:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

where ufn is the name of the file tc edit on the currently logged disk and d is the name of
an alternate drive. The ED program reads and processes the source file and writes the
new file to drive d using the name ufn. After processing, the original file becomes the
backup file. If the operator is addressing disk A, the following command is valid:

ED X.ASM B:

This edits the file X.ASM on drive A, creating the new file X.$$$ on drive B. After a
successful edit, A:X.ASM is renamed to A:X.BAK, and B:X.$$$ is renamed to B:X.ASM.
For convenience the currently logged disk becomes drive B at the end of the edit. The user
should note that if a file named B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a source file. The
operator first erases the existing file and then restarts the edit operation.

Similar to other transient commands, editing can take place on a drive different from
the currently logged disk by preceding the source file name by a drive name. Examples of
valid edit requests are

ED A:X.ASM Edit the file X.ASM on drive A, with new file and
backup on drive A.

ED B:X.ASM A: Edit the file X.ASM on drive B to the temporary file
X.$$% on drive A. After editing, change X.ASM on
drive B to X.BAK and change X.$$$ on drive A to
X.ASM.

1.6.6 SYSGEN

The SYSGEN transient command allows generation of an initialized diskette contain-
ing the CP/M operating system. The SYSGEN program prompts the console for com-
mands by interacting as shown.

SYSGEN cr Initiate the SYSGEN program.
SYSGEN VERSION m.m SYSGEN sign-on message.
SOURCE DRIVE NAME Respond with the drive name (one
(OR RETURN TO SKIP) of the letters A, B, C, or D) of the

disk containing a CP/M system,
usually A. If a copy of CP/M
already exists in memory due to a
MOVCPM command, type a car-
riage return only. Typing a drive
name d will cause the response:

SOURCE ON d THEN TYPE RETURN Place a diskette containing the
CPI/M operating system on drive d
(d is one of A, B, C, or D). Answer
by typing a carriage return when
ready.

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

FUNCTION COMPLETE System is copied to memory. SYS-
GEN will then prompt with:

DESTINATION DRIVE NAME If a diskette is being initialized,

(OR RETURN TO REBOOT) place the new disk into a drive and
answer with the drive name. Oth-
erwise, type a cr and the system
will reboot from drive A. Typing
drive name d will cause SYSGEN
to prompt with:

DESTINATION ON d Place new diskette into drive d;

THEN TYPE RETURN type return when ready.

FUNCTION COMPLETE New diskette is initialized in drive
d.

The “DESTINATION” prompt will be repeated until a single carriage return is typed at
the console, so that more than one disk can be initialized.

Upon completion of a successful system generation, the new diskette contains the
operating system and only the built-in commands are available. A factory-fresh, IBM-
compatible diskette appears to CP/M as a diskette with an empty directory; therefore, the
operator must copy the appropriate COM files from an existing CP/M diskette to the
newly constructed diskette using the PIP transient.

The user can copy all files from an existing diskette by typing the PIP command

PIP B: = A: *.*[v]

which copies all files from disk drive A to disk drive B and verifies that each file has been
copied correctly. The name of each file is displayed at the console as the copy operation
proceeds.

The user should note that a SYSGEN does not destroy the files that already existon a
diskette; it only constructs a new operating system. If a diskette is being used only on
drives B through P and will never be the source of a bootstrap operation on drive A, the
SYSGEN need not take place.

1.6.7 SUBMIT ufn parm#1 ... parm#n

The SUBMIT command allows CP/M commands to be batched for automatic process-
ing. The ufn given in the SUBMIT command must be the file name of a file that exists on
the currently logged disk, with an assumed file type of “SUB.” The SUB file contains
CP/M prototype commands with possible parameter substitution. The actual parameters
parm#1 ... parm#n are substituted into the prototype commands, and, if no errors occur,
the file of substituted commands are processed sequentially by CP/M.

The prototype command file is created using the ED program, with interspersed “$”
parameters of the form

$1 %5283 ... $n

corresponding to the number of actual parameters that will be included when the file is
submitted for execution. When the SUBMIT transient is executed, the actual parameters
parm#1 ... parm#n are paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not correspond, the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

submit function is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

$$$.suB

on the logged disk. When the system reboots (at the termination of the SUBMIT), this
command file is read by the CCP as a source of input rather than the console. If the
SUBMIT function is performed on any disk other than drive A, the commands are not
processed until the disk is inserted into drive A and the system reboots. The user can
abort command processing at any time by typing a rubout when the command is read and
echoed. In this case the $$$.SUB file is removed and the subsequent commands come
from the console. Command processing is also aborted if the CCP detects an error in any
of the commands. Programs that execute under CP/M can abort processing of command
files when error conditions occur by erasing any existing $$$.SUB file.

To introduce dollar signs into a SUBMIT file, the user may type a “$%$” which reduces
to a single “$” within the command file. An up-arrow symbol “A” may precede an
alphabetic character x, which produces a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands

ASM $1

DIR $1.*

ERA *.BAK

PIP $2:=$1.PRN
ERA $1.PRN

and the command
SUBMIT ASMBL X PRN

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, substituting
“X” for all occurrences of $1 and “PRN” for all occurrences of $2. This results in a
$$%$.SUB file containing the commands

ASM X

DIR X.*

ERA ".BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file on an alternate drive by preceding the file
name by a drive name. Submitted files are only acted upon when they appear on drive A.
Thus it is possible to create a submitted file on drive B that is executed at a later time when
inserted in drive A.

An additional utility program called XSUB extends the power of the SUBMIT facility
to include line input to programs as well as the console command processor. The XSUB
command is included as the first line of the submit file. When it is executed, XSUB
self-relocates directly below the CCP. All subsequent submit command lines are pro-
cessed by XSUB so that programs that read buffered console input (BDOS function 10)

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

receive their input directly from the submit file. For example, the file SAVER.SUB can
contain the submit lines

XSuB
DDT
1$1.COM
R

GO
SAVE 1 $2.COM

with a subsequent SUBMIT command

A>SUBMIT SAVER PIP Y

that substitutes X for $1 and Y for $2 in the command stream. The XSUB program loads,

followed by DDT, which is sent to the command lines PIP.COM, R, and GO0, thus

returning to the CCP. The final command SAVE 1 Y.COM is processed by the CCP.
The XSUB program remains in memory and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent submit command
streams do not require the XSUB, unless an intervening cold start has occurred. The user
should note that XSUB must be loaded after the optional CP/M DESPOOL utility, if both

are to run simultaneously.

1.6.8 DUMP um

The DUMP program types the contents of the disk file (ufn) at the console in
hexadecimal form. The file contents are listed sixteen bytes at a time, with the absolute
byte address listed to the left of each line in hexadecimal. Long typeouts can be aborted by
pushing the rubout key during printout. (The source listing of the DUMP program is
given in Chapter 5 as an example of a program written for the CP/M environment.)

1.6.9 MOVCPM

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters can be used to indicate the desired size
of the new system and the disposition of the new system at program termination. If the
first parameter is omitted or an “*” is given, the MOVCPM program will reconfigure the
system to its maximum size, based upon the kilobytes of contiguous RAM in the host
system (starting at 0000H). If the second parameter is omitted, the system is executed,
but not permanently recorded; if “*” is given, the system is left in memory, ready for a
SYSGEN operation. The MOVCPM program relocates a memory image of CP/M and
places this image in memory in preparation for a system generation operation. The
command forms are

MOVCPM Relocate and execute CP/M for management of the

current memory configuration (memory is exam-
ined for contiguous RAM, starting at 100H). On

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

MOVCPM n
MOvVCPM **
MOVCPM n*

The command

MOVCPM **

completion of the relocation, the new system is
executed but not permanently recorded on the
diskette. The system that is constructed contains a
BIOS for the Intel MDS 800.

Create a relocated CP/M system for management
of an n kilobyte system (n must be in the range of 20
to 64), and execute the system as described.

Construct a relocated memory image for the cur-
rent memory configuration, but leave the memory
image in memory in preparation for a SYSGEN
operation.

Construct a relocated memory image for an n kilo-
byte memory system, and leave the memory image
in preparation for a SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in memory, ready
for a SYSGEN operation. The message

READY FOR 'SYSGEN' OR
'SAVE 34 CPMxx.COM’

is printed at the console upon completion, where xx is the current memory size in
kilobytes. The operator can then type

SYSGEN

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Start the system generation.

Respond with a carriage return to skip the
CP/M read operation since the system is
already in memory as a result of the previous
MOVCPM operation.

DESTINATION DRIVE NAME Respond with B to write new system to the

(OR RETURN TO REBOOT)

DESTINATION ON B,
THEN TYPE RETURN

diskette in drive B. SYSGEN will prompt
with:

Ready the fresh diskette on drive B and type a
return when ready.

If the user responds with “A” rather than “B” above, the system will be written todrive A
rather than B. SYSGEN will continue to type the prompt

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a
program with a system reboot.

single carriage return, which stops the SYSGEN

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The user can then go through the reboot process with the old or new diskette. Instead
of performing the SYSGEN operation, the user can type

SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where “xx” is the value indicated in the
SYSGEN message. The CP/M memory image on the currently logged disk is in a form
that can be “patched.” This is necessary when operating in a nonstandard environment
where the BIOS must be altered for a particular peripheral device configuration, as
described in Chapter 6.

Valid MOVCPM commands are

MOVCPM 48 Construct a 48K version of CP/M and start
execution.
MOVCPM 48 * Construct a 48K version of CP/M in preparation

for permanent recording; response is

READY FOR 'SYSGEN’ OR
‘SAVE 34 CPM48.COM’

MOVCPM ™ * Construct a maximum memory version of CP/M
and start execution.

The newly created system is serialized with the number attached to the original
diskette and is subject to the conditions of the Digital Research Software Licensing
Agreement.

1.7 BDOS Error Messages

There are three error situations that the Basic Disk Operating System intercepts
during file processing. When one of these conditions is detected, the BDOS prints the
message:

BDOS ERR ON d: error

where d is the drive name and “error” is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The “BAD SECTOR” message indicates that the disk controller electronics has
detected an error condition in reading or writing the diskette. This condition is generally
caused by a malfunctioning disk controller or an extremely worn diskette. If the user
finds that the CP/M reports this error more than once a month, the state of the controller
electronics and the condition of the media should be checked. The user can also encounter
this condition in reading files generated by a controller produced by a different manufac-
turer. Even though controllers are claimed to be IBM-compatible, one often finds small
differences in recording formats. The MDS-800 controller, for example, requires two
bytes of one’s following the data CRC byte, which is not required in the IBM format. As a
result, diskettes generated by the Intel MDS can be read by almost all other IBM-
compatible systems, while disk files generated on other manufacturers’ equipment will
produce the “BAD SECTOR” message when read by the MDS. Recovery from this
condition is accomplished by typing a ctl-C to reboot (the safest course), or a return,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 29

which ignores the bad sector in the file operation. The user should, however, note that
typing a return may destroy diskette integrity if the operation is a directory write. The
user should be sure to have adequate backups in this case.

The “SELECT” error occurs when there is an attempt to address a drive beyond the
range supported by the BIOS. In this case, the value of din the error message gives the
selected drive. The system reboots following any input from the console.

The “READ ONLY” message occurs when there is an attempt to write to a diskette or
file that has been designated as read only in a STAT command or has been set to
read only by the BDOS. The operator should reboot CP/M by using the warm start
procedure (ctl-C) or by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BDOS allows the diskette to be changed
without the warm or cold start, but internally marks the drive as read only. The status of
the drive is subsequently changed to read/write if a warm or cold start occurs. Onissuing
this message, CP/M waits for input from the console. An automatic warm start takes
place following any input.

1.8 Operation of CP/M on the MDS

This section gives operating procedures for using CP/M on the Intel MDS microcom-
puter development system. Basic knowledge of the MDS hardware and software systems
is assumed.

CP/M is initiated in essentially the same manner as Intel’s ISIS operating system. The
disk drives are labeled 0 through 3 on the MDS, corresponding to CP/Mdrives A through
D, respectively. The CP/M system diskette is inserted into drive 0, and the BOOT and
RESET switches are depressed in sequence. The interrupt 2 light should go on at this
point. The space bar is then depressed on the system console, and the light should go out
(if it does not, the user should check connections and baud rates). The BOOT switch is
turned off, and the CP/M sign-on message should appear at the selected console device,
followed by the “A>" system prompt. The user can then issue the various resident and
transient commands.

The CP/M system can be restarted (warm start) at any time by pushing the INT 0
switch on the front panel. The built-in Intel ROM monitor can be initiated by pushing the
INT 7 switch (which generates an RST 7), except when operating under DDT, in which
case the DDT program gets control instead.

Diskettes can be removed from the drives at any time, and the system can be shut
down during operation without affecting data integrity. The user must not remove a
diskette and replace it with another without rebooting the system (cold or warm start)
unless the inserted diskette is “read only.”

As a result of hardware hang-ups or malfunctions, CP/M may type the message

BDOS ERR ON d: BAD SECTOR

where d is the drive that has a permanent error. This error can occur when drive doors are
opened and closed randomly, followed by disk operations, or can be caused by a diskette,
drive, or controller failure. The user can optionally elect to ignore the error by typing a
single return at the console. The error may produce a bad data record, requiring reinitiali-
zation of up to 128 bytes of data. The operator can reboot the CP/M system and try the
operation again.

Termination of a CP/M session requires no special action, except that it is necessary to
remove the diskettes before turning the power off to avoid random transients that often
make their way to the drive electronics.

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Factory-fresh, IBM-compatible diskettes should be used rather than diskettes that
have previously been used with any ISIS version. In particular, the ISIS “FORMAT”
operation produces nonstandard sector numbering throughout the diskette. This non-
standard numbering seriously degrades the performance of CP/M and will operate
noticeably slower than the distribution version. If it becomes necessary to reformat a
diskette (which should not be the case for standard diskettes), a program can be written
under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering (1-26) on each track.

IBM-compatible 8-inch diskettes in general do not need to be formatted. However,
5Y%-inch diskettes will need to be formatted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

ED

2.1 Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M source files.
ED is initiated in CP/M by typing

ED filename
or

ED filename. typ

In general, ED reads segments of the source file given by filename or filename.typ into the
central memory, where the file is manipulated by the operator and subsequently
written back to disk after alterations. If the source file does not exist before editing, it is
created by ED and initialized to empty. The overall operation of ED is shown in Figure 2.1.

2.1.1 ED Operation

ED operates upon the source file, denoted in Figure 2.1 by x.y, and passes all text
through a memory buffer where the text can be viewed or altered (the number of lines
that can be maintained in the memory buffer varies with the line length, but has a total
capacity of about 5000 characters in a 20K CP/M system). Text material that has been
edited is written into a temporary work file under command of the operator. Upon
termination of the edit, the memory buffer is written to the temporary file, followed by
any remaining (unread) text in the source file. The name of the original file is changed
from x.y to x.BAK so that the most recent previously edited source file can be reclaimed if
necessary (see the CP/M commands ERASE and RENAME). The temporary file is then
changed from x.$$$ to x.y, which becomes the resulting edited file.

The memory buffer is logically between the source file and working file as shown in
Figure 2.2.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

Figure 2.1 Overall ED Operation

Source
Libraries

Source
File
filename.txt

File
filename.bak

D = memory buffer
O = disk file

Figure 2.2 Memory Buffer Organization

Source File

Memory Buffer

First Line 1 First Line
Appended 2 Buffered
Lines Text
SPe| MR T
|
| .
Unprocessed Next | Free
Source | Append | Memory
Lines I | Space
! |
| i

SP = Source Pointer
MP = Memory Pointer

|
Next

Write

TP = Temporary Pointer

34

Temporary
File
filename.$$%

N

Wis

Temporary File

First Line

Processed

Text

Free File
Space

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TG DIGITAL RESEARCH

2.1.2 Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, several single letter ED
commands transfer lines of text from the source file through the memory buffer to the
temporary (and eventually final) file. Single letter commands are shown in upper case,
but can be typed in either upper or lower case.

nA Append the next n unprocessed source lines from the source file at
SP to the end of the memory buffer at MP. Increment SP and MP by
n. If upper case translation is set (see the U command) and the A
command is typed in upper case, all input lines will automatically be
translated to upper case.

nW Write the first n lines of the memory buffer to the temporary file
free space. Shift the remaining lines n+1 through MP to the top of
the memory buffer. Increment TP by n.

E End the edit. Copy all buffered text to temporary file and copy all
unprocessed source lines to temporary file. Rename files as des-

cribed previously.

H Move to head of new file by performing automatic E command.
Temporary file becomes the new source file, the memory buffer is
emptied, and a new temporary file is created (equivalent to issuing
an E command, followed by a reinvocation of ED using x.y as the file
to edit).

o] Return to original file. The memory buffer is emptied, the tempor-
ary file is deleted, and the SP is returned to position 1 of the source
file. The effects of the previous editing commands are thus

nullified.
Q Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer nis omitted in any ED com-
mand where an integer is allowed, then 1 is assumed. Thus, the commands A and W
append one line and write one line, respectively. In addition, if a pound sign (#) is given in the
place of n, then the integer 65535 is assumed (the largest value for n that is allowed). Since
most reasonably sized source files can be contained entirely in the memory buffer,
the command #A is often issued at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer to the temporary file.
Two special forms of the A and W commands are provided as a convenience. The
command OA fills the current memory buffer at least half full, while OW writes lines until
the buffer is at least half empty. An error is issued if the memory buffer size is exceeded.
The operator can then enter any command (such as W) that does not increase memory
requirements. The remainder of any partial line read during the overflow will be brought
into memory on the next successful append.

2.1.3 Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in with the A
command from a source file. The memory buffer has an associated (imaginary) character
pointer CP that moves throughout the memory buffer under command of the operator.
The memory buffer appears logically as shown in Figure 2.3 where the dashes represent
characters of the source line of indefinite length, terminated by carriage-return (<cr>)
and line-feed (<1f>) characters, and CP represents the imaginary character pointer. The

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

user should note that the CP is always located ahead of the first character of the firstline,
behind the last character of the last line, or between two characters. The current line CL
is the source line that contains the CP.

Figure 2.3 Logical Organization of Memory Buffer

Memory Buffer

first

line —_— <cr><lIf>
————————— <cr><lIf>

current

e O === ———— e > <>

last @

line — T T <er><1f>

2.1.4 Line Numbers and ED Start-up

ED produces absolute line number prefixes that can be used to reference a line, or
range of lines. The absolute line number is displayed at the beginning of each line when
ED is in “insert mode” (see the | command in Section 2.1.5), where each line number takes
the form

nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535. If the memory buffer
is empty or if the current line is at the end of the memory buffer, nnnnn appears as 5
blanks. '

The user may reference an absolute line number by preceding any command by a
number followed by a colon, in the same format as the line number display. In this case,
the ED program moves the current line reference to the absolute line number, if the line
exists in the current memory buffer. The line denoted by the absolute line number must
be in the memory buffer (see the A command). Thus, the command

345:T

is interpreted as “move to absolute 345, and type the line.” Absolute line numbers are
produced only during the editing process and are not recorded with the file. In particular,
the line numbers will change following a deleted or expanded section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute number by a colon. Thus, the
command

:400T

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

is interpreted as “type from the current line number through the line whose absolute
number is 400.” Combining the two line reference forms, the command

345::400T

for example, is interpreted as “move to absolute line 345, then type through absolute line
400.” Absolute line references of this sort can precede any of the standard ED commands.
Line numbering is controlled by the “V” (Verify line numbers) command. Line num-
bering can be disabled by typing the “-V” command.
If the file to edit does not exist, ED types the message

NEW FILE

t“er

The user must enter an “i” command so that text can be inserted into the memory buffer
by typing input lines terminated by carriage-returns. A single ctl-Z character returns ED
to command mode.

2.1.5 Memory Buffer Operation

When ED begins, the memory buffer is empty. The operator may either append lines
(A command) from the source file or enter the lines directly from the console with the
insert command

ED then accepts any number of input lines, where each line terminates with a <cr> (the
<lIf>is supplied automatically), until a control-z (denoted by 1z) is typed by the operator.
The CP is positioned after the last character entered. The sequence

I<cr>

NOW IS THE<cr>

TIME FOR<cr>

ALL GOOD MEN<cr>

tz
leaves the memory buffer as

NOW IS THE<cr><If>
TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

Generally, ED accepts command letters in upper or lower case. If the command is
upper case, all input values associated with the command are translated to upper case. In
particular, if the “I” command is typed, all input lines are automatically translated
internally to upper case. The lower case form of the “i” command is most often used to
allow both upper and lower case letters to be entered.

Various commands can be issued that manipulate the CP or display source text in the

vicinity of the CP. The commands shown below with a preceding n indicate that an

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

optional unsigned value can be specified. When preceded by +, the command can be
unsigned, or have an optional preceding plus or minus sign. As before, the pound sign (#)
is replaced by 65535. If an integer n is optional, but not supplied, then n =1is assumed.
Finally, if a plus sign is optional, but none is specified, then + is assumed.

+B
+nC

Move CP to beginning of memory buffer if + and to bottom if -.

Move CP by £n characters (moving ahead if +), counting the
<cr><If> as two distinct characters.

Delete n characters ahead of CP if plus and behind CP if minus.

Kill (i.e., remove) *n lines of source text using CP as the current
reference. If CP is not at the beginning of the current line when K is
issued, the characters before CP remain if + is specified, while the
characters after CP remain if - is given in the command.

If n = 0, move CP to the beginning of the current line (if it is not
already there). If n # 0, first move the CP to the beginning of the
current line and then move it to the beginning of the line that is n
lines down (if +) or up (if -). The CP will stop at the top or bottom of
the memory buffer if too large a value of n is specified.

If n = 0, type the contents of the current line up to CP. If n = 1, type
the contents of the current line from CP to the end of the line. If
n>1, type the current line along with n - | lines that follow, if + is
specified. Similarly, if n>l and - is given, type the previous n lines up
to the CP. Any key can be depressed to abort long type-outs.

Equivalent to £nLT, which moves up or down and types a single
line.

2.1.6 Command Strings

Any number of commands can be typed contiguously (up to the capacity of the console
buffer) and are executed only after the <cr> is typed. Thus, the operator may use the
CP/M console line editing operation to manipulate the input command line:

ctl-C
cti-E

ctl-H
ctl-J

ctl-M
ctl-R

ctl-U
ctl-X
ctl-Z
rub/del

CP/M system reboot when typed at start of line.

Physical end of line: carriage is returned, but line is
not sent until the carriage return key is depressed.

Backspace one character position.
Terminate current input (line feed).
Terminate current input (carriage return).

,

Retype current command line: types a “clean line’
following character deletion with rubouts.

Delete the entire line typed at the console.
Same as ctl-U.
End input from the console (used in PIP and ED).

Delete and echo the last character typed at the
console.

38 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Suppose the memory buffer contains the characters shown in the previous section,
with the CP following the last character of the buffer. The command strings shown
below produce the results shown to the right. Use lower case command letters to avoid
automatic translation of strings to upper case.

Command String
1. B2T<cr>

2. 5C0T<cr>

3. 2L-T<cr>

4. -L#K<cr>

5. I<cr>
TIME TO<cr>
INSERT<cr>
tz

6. -2L#T<cr>

7. <cr>

Effect Resulting Memory Buffer

Move to beginning . NOW IS THE<cr><If>
of buffer and type TIME FOR<cr><If>

2 lines: ALL GOOD MEN<cr><If>
‘NOW IS THE

TIME FOR’

Move CP 5 NOW I S THE <cr><<If>
characters and type

the beginning

of the line

‘NOW I’

Move two lines NOW IS THE<cr><If>
down and type TIME FOR<cr><If>

previous line ALL GOOD MEN<cr><If>
‘TIME FOR’ @

Move up one line, NOW IS THE<cr><If>
delete 65535 lines
that follow

Insert two lines NOW IS THE<cr><If>
of text with auto- TIME TO<cr><If>
matic translation INSERT<CI’><If>‘

to upper case @

Move up two lines NOW IS THE<cr><If>
and type 65535 TIME TO<cr><If>
lines ahead of CP/ \INSERT<cr><If>
‘NOW IS THE'

Move down one line NOW IS THE<cr><If>
and type one line TIME TO<cr><If>
‘INSERT’ INSERT<cr><If>

2.1.7 Text Search and Alteration

ED also has a command that locates strings within the memory buffer. The command

takes the form

nFs <cr>

or
nFs 1z

where s represents the string to match, followed by either a <cr>or ctl-Z, denoted by !z.
ED starts at the current position of CP and attempts to match the string. The match is
attempted n times, and, if successful, the CP is moved directly after the string. If the n
matches are not successful, the CP is not moved from its initial position. Search strings
can include ctl-L, which is replaced by the pair of symbols <cr><If>.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

The following commands illustrate the use of the F command:

Command String Effect Resulting Memory Buffer
1. B#T<cr> Move to begin- NOW IS THE<cr><If>
ning and type TIME FOR<cr><If>
entire buffer ALL GOOD MEN<cr><If>
2. FS T<cr> Find the end of NOW IS T A HE<cr><If>
the string ‘S T’
3. FItz0TT Find the next ‘I’ NOW IS THE<cr><If>

and type to the Tl A ME FOR<cr><If>
CP; then type the @

remainder of the ALL GOOD MEN<cr><Iif>
current line:

‘ME FOR’

An abbreviated form of the insert command is also allowed, which is often used in
conjunction with the F command to make simple textual changes. The form is
Istz
or
I s<cr>

where s is the string to insert. If the insertion string is terminated by a !z, the string is
inserted directly following the CP, and the CP positioned directly after the string. The
action is the same if the command is followed by a <cr> except that a <cr><If> is
automatically inserted into the text following the string. Consider the following com-
mand sequences as examples of the F and I commands:

Command String Effect Resulting Memory Buffer
1. BITHIS IS 1z<cr> Insert ‘'THIS IS’ THIS ISANOW THE <cr><If>
at the beginning
of the text

TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

FTIME'z-4DIPLACEtz<cr> Find ‘TIME’ and THIS IS NOW THE<cr><If>

2 delete it; then PLACEA_ FOR<cr><If>
insert ‘PLACE’
ALL GOOD MEN<cr><If>
3. 3F0O1z-3D5D1 Find third THIS IS NOW THE <cr><If>
CHANGES!z<cr> occurrence of ‘O’ PLACE FOR<cr><If>
(i.e., the second ‘O’ ALL CHANGES s <cr><If>
in GOOD), delete
previous 3
characters and the
subsequent 5 charac-
ters; then insert
'CHANGES’
4. -8CISOURCE<cr> Move back 8 THIS IS NOW THE<cr><If>
characters and PLACE FOR<cr><If>
insert the line ALL SOURCE<cr><<If>

‘SOURCE<cr><If>' CHAN GES<cr><If>

ED also provides a single command that combines the F and I commands to perform
simple string substitutions. The command takes the form
nS sqlzsp <cr>
or
nS sqlzso 1z

40 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

and has exactly the same effect as applying the following command string a total of n
times:
F sq1z-kDlsp <cr>
or
F sqtz-kDlsp 1z

where k is the length of the string. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for the first string
until the end of buffer or until the substitution has been performed n times.

As a convenience, a command similar to F is provided by ED, which automatically
appends and writes lines as the search proceeds. The form is

nNs <cr>
or
nNs tz

which searches the entire source file for the nth occurrence of the strings (the user should
recall that F fails if the string cannot be found in the current buffer). The operation of the
N command is precisely the same as F except in the case that the string
cannot be found within the current memory buffer. In this case, the entire memory
content is written (i.e., an automatic #W is issued). Input lines are then read until the
buffer is at least half full or the entire source file is exhausted. The search continues in
this manner until the string has been found n times or until the source file has been
completely transferred to the temporary file.
A final line editing function, called the juxtaposition command, takes the form

nJsqtzsptzsy <cr>
or
nJsqtzsotzsy 1z

with the following action applied n times to the memory buffer: search from the current
CP for the next occurrence of the string s. If found, insert the string s5, and move CP to
follow s,. Then delete all characters following CP up to (but not including) the string $3,
leaving CP directly after s5. If s3 cannot be found, then no deletion is made. If the current
line is

NOW IS THE TIME<cr><If>
the command
JW tzZWHAT 1zt1<cr>
results in
NOW WHAT <cr If>
(The user should recall that !l (ctl-L) represents the pair <cr><If> in search and
substitute strings.)

The number of characters allowed by ED in the F, S, N, and] commands is limited to
100 symbols.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

2.1.8 Source Libraries

ED also allows the inclusion of source libraries during the editing process with the R
command. The form of this command is

R filename 1z
or
R filename <cr>

where filename is the primary filename of a source file on the disk with an assumed
filetype of ‘LIB’. ED reads the specified file, and places the characters into the memory
buffer after CP, in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB until the end-of-file and

automatically inserts the characters into the memory buffer.
ED also includes a “block move” facility implemented through the X (Xfer) command.

The form
nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$.L1B

which is active only during the editing process. In general, the user can reposition the
current line reference to any portion of the source file and transfer lines to the temporary
file. The transferred lines accumulate one after another in this file and can be retrieved by

simply typing
R

which is the trivial case of the library read command. In this case, the entire transferred
set of lines is read into the memory buffer. The user should note that the X command does
not remove the transferred lines from the memory buffer, although aK command can be
used directly after the X, and the R command does not empty the transferred LIB file.
That is, given that a set of lines has been transferred with the X command, they can be
reread any number of times back into the source file. The command

0X

is provided, however, to empty the transferred line file.

The user should note that upon normal completion of the ED program through Q or
E, the temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

2.1.9 Repetitive Command Execution

The macro command M allows the ED user to group ED commands together for
repeated evaluation. The M command takes the form

nMCS <cr>
or

nMCS tz

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where CS represents a string of ED commands, not including another M command. ED
executes the command string n times if n>1. If n=0 or 1, the command string is exe-
cuted repetitively until an error condition is encountered (e.g., the end of the memory
buffer is reached with an F command).

As an example, the following macro changes all occurrences of GAMMA to DELTA
within the current buffer, and types each line that is changed

MFGAMMA1z-5DIDELTAtz0TT<cr>
or equivalently

MSGAMMATI1zDELTAtz0TT<cr>

2.2 ED Error Conditions

On error conditions, ED prints the message “BREAK X AT C” where X is one of the
error indicators shown below:

? Unrecognized command.

> Memory buffer full (use one of the commands D, K, N, S, or W to
remove characters); F, N, or S strings too long.

Cannot apply command the number of times specified (e.g., in F
command).

(0] Cannot open LIB file in R command.

If there is a disk error, CP/M displays the following message:

BDOS ERR on d: BAD SECTOR
The operator can choose to ignore the error by pressing the return key at the console (in
this case, the memory buffer data should be examined to see if they were incorrectly
read), or the user can reset the system by ctl-C and reclaim the backup file if its exists. The
file can be reclaimed by first typing the contents of the BAK file to ensure that it contains
the proper information

TYPE x.BAK
where x is the file being edited. Then remove the primary file

ERA x.y
and rename the BAK file

REN x.y=x.BAK
The file can then be reedited, starting with the previous version.

ED also takes file attributes into account. If the operator attempts to edit a read/only

file, the message

** FILE IS READ/ONLY **

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

appears at the console. The file can be loaded and examined, but cannot be altered.
Normally the operator simply ends the edit session and uses STAT to change the file
attribute to R/W. If the edited file has the “system” attribute set, the message

'SYSTEM' FILE NOT ACCESSIBLE
is displayed and the edit session is aborted. Again, the STAT program can be used to
change the system attribute, if desired.
2.3 Control Characters and Commands

The following tabulation summarizes the control characters and commands available

in ED:

Control Character Function
ctl-C System reboot
cti-E Physical <cr><If> (not actually entered in
command)
ctl-H Backspace
ctl-J Logical tab (cols 1, 9, 16,...)
ctl-L Logical <cr><If> in search and substitute
strings
ctl-R Repeat line
ctl-U Line delete
ctl-X Line delete
ctl-Z String terminator
rub/del Character delete
Command Function
nA Append lines
+B Begin or bottom of buffer
+=nC Move character positions
+nD Delete characters
E End edit and close files (normal end)
nF Find string
H End edit, close and reopen files

| Insert characters, use i if both upper and
lower case characters are to be entered

nJ Place strings in juxtaposition

+nK Kill lines

+nL Move down/up lines

nM Macro definition

nN Find next occurrence with autoscan

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

nW
nZ

Return to original file
Move and print pages
Quit with no file changes
Read library file
Substitute strings

Type lines

Translate lower to upper case if U, no trans-
lation if -U

Verify line numbers, or show remaining free
character space

A special case of the V command, 0V, prints
the memory buffer statistics in the form

free/total

where free is the number of free bytes in the
memory buffer (in decimal) and total is the
size of the memory buffer

Write lines
Wait (sleep) for approximately n seconds
Move and type (£nLT).

Because of common typographical errors, ED requires several potentially disastrous
commands to be typed as single letters, rather than in composite commands. The

commands

E(end), H(head), O(original), Q(quit)

must be typed as single letter commands.

The commands 1, J, M, N, R, and S should be typed as i, j, m, n, r, and s if both upper and
lower case characters are used in the operation, otherwise all characters are converted to
upper case. When a command is entered in upper case, ED automatically converts the
associated string to upper case, and vice-versa.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

CP/M Assembler

3.1 Introduction

The CP/M assembler reads assembly language source files from the diskette and
produces 8080 machine language in Intel hex format. The CP/M assembler is initiated by

typing

ASM filename
or

ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the name

filename.ASM

which contains an 8080 assembly language source file. The first and second forms shown
above differ only in that the second form allows parameters to be passed to the assembler
to control source file access and hex and print file destinations.

In either case, the CP/M assembler loads and prints the message

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembler
reads the source file with assumed file type ASM and creates two output files

filename. HEX
and

filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel
hex format, and the PRN file contains an annotated listing showing generated machine

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

code, error flags, and source lines. If errors occur during translation, they will be listed in
the PRN file as well as at the console.

The form ASM filename parms can be used to redirect input and output files from
their defaults. In this case, the parms portion of the command is a three-letter group that
specifies the origin of the source file, the destination of the hex file, and the destination of
the print file. The form is

filename.p1p2p3
where p1, p2, and p3 are single letters
P1: AB, ..., P designates the disk name that contains the source file
p2: A,B, ..., P designates the disk name that will receive the hex file
V4 skips the generation of the hex file
p3: A,B, ..., Pdesignates the disk name that will receive the print file

X places the listing at the console

4 skips generation of the print file

Thus, the command
ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A and that the hex (X.HEX)
and print (X.PRN) files are also to be created on disk A. This form of the command is
implied if the assembler is run from disk A. That is, given that the operator is currently
addressing disk A, the above command is equivalent to

ASM X
The command
ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is to be placed on disk
B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B and skips the generation of the hex and print files (this
command is useful for fast execution of the assembler to check program syntax).

The source program format is compatible with the Intel 8080 assembler (macros are
not implemented in ASM; see the optional MAC macro assembler). There are certain
extensions in the CP/M assembler that make it somewhat easier to use. These extensions
are described below.

3.2 Program Format

An assembly language program acceptable as input to the assembler consists of a
sequence of statements of the form

line# label operation operand ;comment

48 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where any or all of the fields may be present in a particular instance. Each assembly
language statement is terminated with a carriage return and line feed (the line feed is
inserted automatically by the ED program), or with the character !, which is treated as an
end-of-line by the assembler (thus, multiple assembly language statements can be writ-
ten on the same physical line if separated by exclamation mark symbols).

The line# is an optional decimal integer value representing the source program line
number, and ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement types. The identifier is a
sequence of alphanumeric characters where the first character is alphabetic. Identifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($), which can be used
to improve readability of the name. Further, all lower case alphabetics are treated as if
they were upper case. The following are all valid instances of labels

X Xy long$name
X: yxl: longer$named$data:
X1Y2 X1x2 x234$5678$9012$3456:

The operation field contains either an assembler directive or pseudo-operation, or an
8080 machine operation code. The pseudo-operations and machine operation codes are
described below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements.
Again, the complete details of properly formed expressions are given below.

The comment field contains arbitrary characters following the ; symbol until the next
real or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. The CP/M assembler also treats statements that begin with an * in column one
as comment statements, which are listed and ignored in the assembly process.

The assembly language program is formulated as a sequence of statements of the
above form, terminated by an optional END statement. All statements following the
END are ignored by the assembler.

3.3 Forming the Operand

To describe the operation codes and pseudo-operations completely, it is necessary first
to present the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands (labels, constants, and
reserved words), combined in properly formed subexpressions by arithmetic and logical
operators. The expression computation is carried out by the assembler as the assembly
proceeds. Each expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use. That is, if an
expression is to be used in a byte move immediate instruction, the most significant 8 bits
of the expression must be zero. The restriction on the expression significance is given
with the individual instructions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

3.3.1 Labels

As discussed above, a label is an identifier that occurs on a particular statement. In
general, the label is given a value determined by the type of statement that it precedes. If
the label occurs on a statement that generates machine code or reserves memory space
(e.g., a MOV instruction or a DS pseudo-operation), the label is given the value of the
program address that it labels. If the label precedes an EQU or SET, the label is given the
value that results from evaluating the operand field. Except for the SET statement, an
identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler.
This value can then be combined with other operands and operators to form the operand
field for a particular instruction.

3.3.2 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicator. The radix indicators are
binary constant (base 2)
octal constant (base 8)
octal constant (base 8)

decimal constant (base 10)

I OO0 O @

hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O is easily confused
with the digit 0. Any numeric constant that does not terminate with a radix indicator is
assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. That is, binary
constants must be composed of 0 and 1 digits, octal constants can contain digits in the
range 0-7, while decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits as well as hexadecimal digits A (10D), B (11D), C (12D), D (13D), E (14D),
and F (15D). The user should note that the leading digit of a hexadecimal constant must be
a decimal digit to avoid confusing a hexadecimal constant with an identifier (a leading 0
will always suffice). A constant composed in this manner must evaluate to a binary
number that can be contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler. Similar to identifiers, imbedded $ signs are allowed within
constants to improve their readability. Finally, the radix indicator is translated to upper
case if a lower case letter is encountered. The following are all valid instances of numeric
constants

1234 1234D 1100B 1111$0000$1111$0000B
1234H OFFEH 33770 33$77%22Q
33770 0fe3h 1234d offffh

3.3.3 Reserved Words

There are several reserved character sequences that have predefined meanings in the

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

operand field of a statement. The names of 8080 registers are given below. When they are
encountered, they produce the values shown to the right.

A 7
B 0
o} 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(Again, lower case names have the same values as their upper case equivalents.) Machine
instructions can also be used in the operand field and evaluate to their internal codes. In
the case of instructions that require operands, where the specific operand becomes a part
of the binary bit pattern of the instruction (e.g., MOV A,B), the value of the instruction
(in this case MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g., MOV produces 40H).

When the symbol $ occurs in the operand field (not imbedded within identifiers and
numeric constants), its value becomes the address of the next instruction to generate, not
including the instruction contained within the current logical line.

3.34 String Constants

String constants represent sequences of ASCII characters and are represented by
enclosing the characters within apostrophe symbols (). All strings must be fully con-
tained within the current physical line (thus allowing ! symbols within strings) and must
not exceed 64 characters in length. The apostrophe character itself can be included within
a string by representing it as a double apostrophe (the two keystrokes), which becomes a
single apostrophe when read by the assembler. In most cases, the string length is
restricted to either one or two characters (the DB pseudo-operation is an exception), in
which case the string becomes an 8- or 16-bit value, respectively. Two character strings
become a 16-bit constant, with the second character as the low order byte, and the first
character as the high order byte.

The value of a character is its corresponding ASCII code. There is no case translation
within strings, and thus both upper and lower case characters can be represented. The
user should note, however, that only graphic (printing) ASCII characters are allowed
within strings.

Valid strings are which represent
‘A’ 'AB’' 'ab’ 'c’ A AB ab ¢
” Ialll e 10 al ’ ’
'Walla Walla Wash.’ Walla Walla Wash.
‘She said '"Hello’’ to me.’ She said '"Hello’”” to me
'l said ""Hello" to her.’ | said ""Hello" to her

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

3.3.5 Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions.
The operators recognized in the operand field are

a+b unsigned arithmetic sum of a and b
a-b unsigned arithmetic difference between a and b
+b unary plus (produces b)
-b unary minus (identical to 0 - b)
a*b unsigned magnitude multiplication of a and b
a/b unsigned magnitude division of a by b

aMODb remainder aftera / b

NOT b logical inverse of b (all 0s become 1s, 1s become 0s), where b is
considered a 16-bit value

aAND b bit-by-bit logical and of a and b
aORb bit-by-bit logical or of a and b
a XOR b bit-by-bit logical exclusive or of a and b

aSHL b the value that results from shifting a to the left by an amount b,
with zero fill

aSHR b the value that results from shifting a to the right by an amount b,
with zero fill.

In each case, a and b represent simple operands (labels, numeric constants, reserved
words, and one or two character strings) or fully enclosed parenthesized subexpressions
such as

10+20 10h+37Q LI/3 (L2+4) SHR 3
('a'and 5fh) +'0" ('B'+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly time as 16-bit unsigned operations.
Thus, -1 is computed as 0-1, which results in the value 0ffffh (i.e., all1s). The resulting
expression must fit the operation code in which it is used. For example, if the expression is
used in an ADI (add immediate) instruction, the high order 8 bits of the expression must
be zero. As a result, the operation ADI -1 produces an error message (-1 becomes Offffh,
which cannot be represented as an 8-bit value), while ADI (-1) AND 0FFH is accepted by
the assembler since the AND operation zeroes the high order bits of the expression.

3.3.6 Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application that allows the programmer to write expressions without
nested levels of parentheses. The resulting expression has assumed parentheses that are
defined by the relative precedence. The order of application of operators in unparenthe-
sized expressions is listed below. Operators listed first have highest precedence (they are
applied first in an unparenthesized expression), while operators listed last have lowest

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

precedence. Operators listed on the same line have equal precedence, and are applied
from left to right as they are encountered in an expression

*/ MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the
fully parenthesized expressions shown to the right

a*b+t+c (a*b)+c
a+b*c a+(b*o)
aMODb*cSHLd (@MOD b) *¢c) SHL d

aORbANDNOTc+dSHLe aOR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses; thus, the last expression above could be rewritten to force application of
operators in a different order as

(a OR b) AND (NOT c) +d SHL e
resulting in the assumed parentheses
(a OR b) AND ((NOT c) + (d SHL e))

An unparenthesized expression is well-formed only if the expression that results from
inserting the assumed parentheses is well-formed.

3.4 Assembler Directives

Assembler directives are used to set labels to specific values during the assembly,
perform conditional assembly, define storage areas, and specify starting addresses in the
program. Each assembler directive is denoted by a pseudo-operation that appears in the
operation field of the line. The acceptable pseudo-operations are

ORG set the program or data origin
END end program, optional start address
EQU numeric “equate”

SET numeric “set”

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

DW define data words

DS define data storage area

The individual directives are detailed below.

3.4.1 The ORG Directive
The ORG statement takes the form
label ORG expression

where “label” is an optional program identifier and expression is a 16-bit expression,
consisting of operands that are defined before the ORG statement. The assembler begins
machine code generation at the location specified in the expression. There can be any
number of ORG statements within a particular program, and there are no checks to
ensure that the programmer is not defining overlapping memory areas. The user should
note that most programs written for the CP/M system begin with an ORG statement of
the form

ORG 100H

which causes machine code generation to begin at the base of the CP/M transient
program area. If a label is specified in the ORG statement, the label is given the value of
the expression (this label can then be used in the operand field of other statements to
represent this expression).

3.4.2 The END Directive

The END statement is optional in an assembly language program, but if it is present it
must be the last statement (all subsequent statements are ignored in the assembly). The
two forms of the END directive are

label END

label END expression
where the label is again optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expression is
evaluated, and becomes the program starting address (this starting address is included in

the last record of the Intel formatted machine code hex file, which results from the
assembly). Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient program
area).

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

3.4.3 The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular numeric values.
The form is

label EQU expression

where the label must be present and must not label any other statement. The assembler
evaluates the expression, and assigns this value to the identifier given in the label field.
The identifier is usually a name that describes the value in a more human-oriented
manner. Further, this name is used throughout the program to “parameterize” certain
functions. Suppose data received from a teletype appear on a particular input port and
data are sent to the teletype through the next output port in sequence. The series of
equate statements could be used to detine these ports for a particular hardware
environment

TTYBASE EQU 10K ;BASE PORT NUMBER FOR TTY

TTYIN EQU TTYBASE ;TTY DATA IN

TTYOUT EQU TTYBASE+1 ;TTY DATA OUT
At a later point in the program, the statements that access the teletype could appear as

IN TTYIN ;READ TTY DATA TO REG-A

ouT TTYOUT ;WRITE DATA TO TTY FROM REG-A
making the program more readable than if the absolute I/O ports had been used. Further,
if the hardware environment is redefined to start the teletype communications ports at
7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

3.4.4 The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program. The
expression is evaluated and becomes the current value associated with the label. Thus,
the EQU statement defines a label with a single value, while the SET statement defines a
value that is valid from the current SET statement to the point where the label occurs on
the next SET statement. The use of the SET is similar to the EQU statement, but is used
most often in controlling conditional assembly.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

3.4.5 The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language statements that are
to be included or excluded during the assembly process. The form is

IF expression
statement#1

statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If the
expression evaluates to a nonzero value, then statement#l through statement#n are
assembled; if the expression evaluates to zero, the statements are listed but not
assembled. Conditional assembly is often used to write a single “generic” program that
includes a number of possible run-time environments, with only a few specific portions of
the program selected for any particular assembly. The following program segments, for
example, might be part of a program that communicates with either a teletype oraCRT
console (but not both) by selecting a particular value for TTY before the assembly begins.

TRUE EQU OFFEFH 'DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE .DEFINE VALUE OF FALSE
TTY EQU TRUE TRUE IF TTY, FALSE IF CRT
TTYBASE EQU 10H ‘BASE OF TTY I/O PORTS
CRTBASE EQU 20H 'BASE OF CRT I/O PORTS
IF TTY 'ASSEMBLE RELATIVE TO
TTYBASE
CONIN EQU TTYBASE :CONSOLE INPUT
CONOUT EQU TTYBASE+1 :CONSOLE OUTPUT
ENDIF
; I NOT TTY :ASSEMBLE RELATIVE TO
'CRTBASE
CONIN EQU CRTBASE .CONSOLE INPUT
CONOUT EQU CRTBASE+1 .CONSOLE OUTPUT
ENDIF
IN CONIN 'READ CONSOLE DATA
ouT CONOUT :WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a teletype is
connected, based at port 10H. The statement defining TTY could be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

3.4.6 The DB Directive

The DB directive allows the programmer to define initialized storage areas in single
precision (byte) format. The statement form is

label DB e#1, e#2, ..., e#n

where e#1 through e#n are either expressions that evaluate to 8-bit values (the high
order bit must be zero) or are ASCII strings of length no greater than 64 characters.
There is no practical restriction on the number of expressions included on a single
source line. The expressions are evaluated and placed sequentially into the machine code
file following the last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be used as operands in
more complicated expressions. The user should note that ASCII characters are always
placed in memory with the parity bit reset (0). Also, there is no translation from lower to
upper case within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of valid DB statements are

data: DB 0,1,2,3,4,5
DB data and 0ffh,5,377Q,1+2+3+4
sign-on: DB ‘please type your name',cr,If,0
DB ‘AB’' SHR 8, 'C’, 'DE’ AND 7FH

3.4.7 The DW Directive

The DW statement is similar to the DB statement except double precision (two byte)
words of storage are initialized. The form is

label DW e#l1, e#2, .., e#n
where e#1 through e#n are expressions that evaluate to 16-bit results. The user should
note that ASCII strings of one or two characters are allowed, but strings longer than two
characters are disallowed. In all cases, the data storage is consistent with the 8080
processor: the least significant byte of the expression is stored first in memory, followed

by the most significant byte. Examples are

doub: DW offefth,doub+4.signon-$,255+255
DW ‘a’, 5, ‘ab’, 'CD’, 6 shl 8 or lIb.

3.4.8 The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and takes the
form

label DS expression

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

where the label is optional. The assembler begins subsequent code generation after the
area reserved by the DS. Thus, the DS statement given above has exactly the same effect
as the statement

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG $+expression ;MOVE PAST RESERVED AREA

3.5 Operation Codes

Assembly language operation codes form the principal part of assembly language
programs and form the operation field of the instruction. In general, ASM accepts all the
standard mnemonics for the Intel 8080 microcomputer, which are given in detail in Intel’s
“8080 Assembly Language Programming Manual.” Labels are optional on each input line.
The individual operators are listed briefly in the following sections for completeness,
although it is understood that the Intel manuals should be referenced for exact operator
details. In the following tables,

e3 represents a 3-bit value in the range 0-7 which can be one of the
predefined registers A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255.

el6 represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination of operands and opera-
tors. In some cases, the operands are restricted to particular values within the allowable
range, such as the PUSH instruction. These cases will be noted as they are encountered.

In the sections that follow, each operation code is listed in its most general form, along
with a specific example, with a short explanation and special restrictions.

3.5.1 Jumps, Calls, and Returns

The Jump, Call, and Return instructions allow several different forms that test the
condition flags set in the 8080 microcomputer CPU. The forms are

JMP e16 JMP L1 Jump unconditionally to label

JNZ el6 JNZ L2 Jump on nonzero condition to label

Jz el16 JZ 100H Jump on zero condition to label

JNC e16 JNC L1+4 Jump no carry to label

JC el16 JC L3 Jump on carry to label

JPO e16 JPO $+8 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

JP el6 JP GAMMA Jump on positive result to label

JM el16 JM al Jump on minus to label.

CALL el6 CALL 81 Call subroutine unconditionally

CNz el16 CNZ S2 Call subroutine on nonzero
condition

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CZ
CNC
CC
CPO
CPE
CP
CM

RST

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

e16
el16
e16
el16
el16
el6
el6

e3

CZ 100H
CNC S1+4
CCSs3
CPO $+8
CPE S4

CP GAMMA
CM b1$c2

RST O

Call subroutine on zero condition
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result

Call subroutine if minus flag.

Programmed restart, equivalent to
CALL 8*e3, except one byte call.

Return from subroutine
Return if nonzero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result

Return if minus flag is set.

3.5.2 Immediate Operand Instructions

Several instructions are available that load single or double precision registers or
single precision memory cells with constant values, along with instructions that perform
immediate arithmetic or logical operations on the accumulator (register A).

MVI e3,e8

ADI e8

ACI e8

SUI e8

SBI e8

ANI e8

XRI e8

ORI e8

MVI B,255

ADI 1

ACI OFFH

SUIL +3

SBI L AND 11B

ANI $ AND 7FH

XRI 1111$0000B

ORI L AND 1+1

Move immediate data to register
A,B,C,D,E H,L, or M (memory)

Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

Subtract from A without borrow
(carry)

Subtract from A with borrow
(carry)

Logical “and” A with immediate
data

“Exclusive or” A with immediate
data

Logical “or” A with immediate data

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

CPl e8

LXI e3,e16

CPI ‘@’

LXI B,100H

Compare A with immediate data
(same as SUI except register A not
changed).

Load extended immediate to regis-
ter pair (e3 must be equivalent to
B,D,H, or SP).

3.5.3 Increment and Decrement Instructions

The 8080 provides instructions for incrementing or decrementing single and double
precision registers. The instructions are

INR e3

DCR e3

INX e3

DCX e3

INR E

DCR A

INX SP

DCX B

Single precision increment register
(e3 produces one of A, B, C, D, E,
H, L, M)

Single precision decrement regis-
ter (e3 produces one of A, B, C, D,
E,H L M)

Double precision increment regis-
ter pair (e3 must be equivalent to
B,D,H, or SP)

Double precision decrement regis-
ter pair (e3 must be equivalent to
B,D,H, or SP).

3.54 Data Movement Instructions

Instructions that move data from memory to the CPU and from CPU to memory are

given below.

MOV e3,e3

LDAX e3

STAX e3

LHLD e16

SHLD e16

LDA e16

MOV AB

LDAX B

STAX D

LHLD L1

SHLD L5+x

Move data to leftmost element
from rightmost element (e3 produ-
ces one of A,B,C,D,E,H,L, or M).
MOV M,M is disallowed

Load register A from computed
address (e3 must produce either B
or D)

Store register A to computed
address (e3 must produce either B

or D)

Load HL direct from location e16
(double precision load to H and L)

Store HL direct to location el6
(double precision store from H and
L to memory)

LDA Gamma Load register A from address e16

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

STA e16 STA X3-5
POP €3 POP PSW
PUSH e3 PUSH B

IN 8 IN 0

OUT e8 OUT 255
XTHL

PCHL

SPHL

XCHG

Store register A into memory at
elé

Load register pair from stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Load register A with data from
port e8

Send data from register A to port
e8

Exchange data from top of stack
with HL

Fill program counter with data
from HL

Fill stack pointer with data from
HL

Exchange DE pair with HL pair

3.5.5 Arithmetic Logic Unit Operations

Instructions that act upon the single precision accumulator to perform arithmetic and

logic operations are

ADD e3 ADD B
ADC e3 ADC L
SUB e3 SUBH
SBB e3 SBB 2
ANA e3 ANA 1+1
XRA e3 XRA A
ORA e3 ORA B
CMP e3 CMP H
DAA

CMA

Add register given by e3 to accum-
ulator without carry (e3 must pro-
duce one of A,B,C,D,E, H,or L)

Add register to A with carry, e3 as
above

Subtract reg e3 from A without
carry, e3 is defined as above

Subtract register e3 from A with
carry, e3 defined as above

Logical “and” reg with A, e3 as
above

“Exclusive or” with A, e3 as above

Logical “or” with A, e3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon last arithmetic logic unit
operation

Complement the bits in register A

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

STC
CMC
RLC

RRC

RAL

RAR

DAD e3

Set the carry flag to 1
Complement the carry flag

Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
side effect (low order A bit
becomes carry)

Rotate carry/A register to left
(carry is involved in the rotate)

Rotate carry/A register to right
(carry is involved in the rotate)

DAD B Double precision add register pair
e3 to HL (e3 must produce B, D, H,
or SP).

3.5.6 Control Instructions

The four remaining instructions categorized as control instructions are

HLT
DI
El
NOP

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system

No operation.

3.6 Error Messages

When errors occur within the assembly language program, they are listed as single
character flags in the leftmost position of the source listing. The line in error is also
echoed at the console so that the source listing need not be examined to determine if
errors are present. The error codes are

D

Data error: element in data statement cannot be placed in the
specified data area.

Expression error: expression is ill-formed and cannot be computed
at assembly time.

Label error: label cannot appear in this context (may be duplicate

label).

Not implemented: features that will appear in future ASM versions
(e.g., macros) are recognized, but flagged in this version.

Overflow: expression is too complicated (i.e., too many pending
operators) to be computed and should be simplified.

Phase error: label does not have the same value on two subsequent
passes through the program.

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Register error: the value specified as a register is not compatible
with the operation code.

Syntax error: statement is not properly formed.

Value error: operand encountered in expression is improperly
formed.

Several error messages are printed that are due to terminal error conditions:

NO SOURCE FILE PRESENT The file specified in the ASM com-
mand does not exist on disk.

NO DIRECTORY SPACE The disk directory is full; erase files
that are not needed and retry.

SOURCE FILE NAME ERROR Improperly formed ASM file name
(e.g., it is specified with ? fields).

SOURCE FILE READ ERROR Source file cannot be read properly
by the assembler; execute a TYPE
to determine the point of error.

OUTPUT FILE WRITE ERROR Output files cannot be written
properly; most likely cause is a full
disk; erase and retry.

CANNOT CLOSE FILE Output file cannot be closed; check

to see if disk is write protected.

3.7 A Sample Session

The following

session shows interaction with the assembler and debugger in the

development of a simple assembly language program. The / arrow represents a carriage

return keystroke.
A>ASM SORT y

Assemble SORT.ASM

CP/M ASSEMBLER - VER 1.0

015C Next free address
003H USE FACTOR Percent of table used 00 to ff (hexadecimal)

END OF ASSEMBLY

A>DIR SORT.¥

SORT ASM
SORT BAK
SORT PRN
SORT HEX

A>TYPE SORT.PRN/

Source file

Backup from last edit

Print file (contains tab characters)
Machine code file

Source,line

r

’

Machine code loca
0100

SORT PROGRAM IN BP/M ASSEMBLY LANGUAGE
START AT THE BEGINNING OF THE TRANSIENT
PROGRAM AREA

tion
ORG 100H

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

Generated machine code

0100 214601¥SORT:
0103 3601

0105 214701

0108 3600

010A 7E
010B FEO09
010D D21901

0110 214601
0113 7EB7C20001

0118 FF

Truncated
0119

5F16002148 CONT:
0121 4E792346

0125 23
0126 965778239E

012B DA3FO1

s

012E B2CA3FO1
0132 56702B5E
0136 712B722B73

013B 21460134

013F 2147013;103INC|:

’

0146 00 SwW:
0147 I:
0148 050064001EAV:

COMPL:

LX! H,SW ;ADDRESS SWITCH TOGGLE

MVI M1 ;SET TO 1 FOR FIRST ITERATION
LX1 H,I ;ADDRESS INDEX

MVI MO0 ;1=0

COMPARE | WITH ARRAY SIZE

MOV AM ;A REGISTER = |

CPI N-1 ;CY SET IF | < (N-1)

JNC CONT ;CONTINUE IF | < = (N-2)

END OF ONE PASS THROUGH DATA

LXI H,SW ;CHECK FOR ZERO SWITCHES

MOV A, M! ORA A! JNZ SORT ;END OF SORT IF SW=0
RST 7 ;GO TO THE DEBUGGER INSTEAD OF REB

CONTINUE THIS PASS
ADDRESSING |, SO LOAD AV(l) INTO REGISTERS

MOV E, Al MVI D, 0! LXI H, AV! DAD D! DAD D
MOV C, M! MOV A, C! INX H! MOV B, M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTEIN B

MOV H AND L TO ADDRESS AV(I+1)
INX H

COMPARE VALUE WITH REGS CONTAINING AV (1)
SUB M! MOV D, Al MOV A, B! INXH!SBBM ;SUBTRACT

BORROW SET IF AV(I+1) > AV(l)
JC INCI :SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES

ORA D! JZ INCI ;SKIP IF AV(l) = AV(I+1)

MOV D, M! MOV M, B! DCX H! MOV E, M

MOV M, C! DCX H! MOV M, D! DCX H! MOV M, E

INCREMENT SWITCH COUNT
LXI H,SW! INR M

INCREMENT I
LXI H,I! INR M! JMP COMP

DATA DEFINITION SECTION

DB 0 ;RESERVE SPACE FOR SWITCH COUNT
DS 1 ;'SPACE FOR INDEX

DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767

EQU ($-AV)/2 ;COMPUTE N INSTEAD OF PRE
END

000A = N
A>TYPE SORT.HEX Equate value

. hY
:10010000214601360121470136007EFE09D2190140 } Machine code in

:100110002146017EB7C20001FF5F16002148011988 HEX format

:10012000194E79234623965778239EDA3F01B2CAA7

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

:100130003F0156702B5E712B722B732146013421C7
:07014000470134C30A01006E
:10014800050064001E00320014000700E8032C01BB
:0401580064000180BE

:0000000000

A>DDT SORT.HEXy Start debug run

Machine code in
HEX format

16K DDT VER 1.0

NEXT PC

015C 0000 Default address (no address on END statement)
-XPy

P=0000 100y Change PC to 100

-UFFFFy Untrace for 65535 steps

Abort with rubout
C0ZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,0146*0100
-T10y Trace 1016 steps

COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, M
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1ZOM1EOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=010D JNC 0119
C1ZOM1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=0110 LXI H, 0146
C1ZOM1EOI0O A=00 B=0000 D=0000 H=0146 S=0100 P=0113 MOV A, M
C1ZOM1EOI0O A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0115 JNZ 0100
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, M*010B
-A10D Stopped at 10BH-"

010D JC 119y Change to a jump on carry
0110y

-XPy
P=010B 100y Reset program counter back to beginning of program

-T10y Trace execution for 10H steps

Altered instruction

CO0ZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0100 LXI H,0146
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
COZOMOEQOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H,0147
C0ZOMOEOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M,00
C0ZOMOEOQOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010A MOV AM
C0ZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1ZOM1EQI0O A=00 B=0000 D=0000 H=0147 S=0100 P=010D JC 0119~——
C1ZOM1EOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=0119 MOV EA
C1ZOM1EOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=011A MVI D,00

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

65

C1ZOM1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=011C LXI H,0148
C1ZOM1EOI0O A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
C0ZOM1EOI0 A=00 B=0000 D=0000 H=0148 S=0100 P=0120 DAD D
C0ZOM1EOI0O A=00 B=0000 D=0000 H=0148 S=0100 P=0121 MOV CM
C0ZOM1EOI0O A=00 B=0005 D=0000 H=0148 S=0100 P=0122 MOV A,C
CO0ZOM1EOI0O A=05 B=0005 D=0000 H=0148 S=0100 P=1023 INX H
COZOM1EOI0O A=05 B=0005 D=0000 H=0149 S=0100 P=0124 MOV B,M;0125
-L100y Automatic breakpoint

0100 LX!I H,0146
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,00
010A MOV AM
010B CPI 09
010D JC 0119
0110 LXI H,0146
0113 MOV AM
0114 ORA A
0115 JNZ 0100 ./
-Ly

List some code
e from 100H

0118 RST 07
0119 MOV EA
011A MVI D,00
011C LXI H,0148
-Abort list with rubout
-G,11By Start program from current PC (0125H) and run in real time to 11BH

List more

*0127 Stopped with an external interrupt 7 from front panel (program was
T4y Look at looping program in trace mode looping indefinitely)
C0ZOMOEQI0O A=38 B=0064 D=0006 H=0156 S=0100 P=0127 MOV D,A
COZOMOEOIO A=38 B=0064 D=3806 H=0156.S=0100 P=0128 MOV A,B
C0ZOMOEOI0O A=00 B=0064 D=3806 H=0156 S=0100 P=0129 INX H
COZOMOEOIO A=00 B=0064 D=3806 H=0157 S=0100 P=012A SBB M*012B
-D148

Data are sorted, but program does not stop.
0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D.,........

0160 00 00 00 00 00 OO0 OO OO OO OO0 OO OO OO OO OO 00cvvnn..
-GO y Return to CP/M

A>DDT SORT. HEXy Reload the memory image
16K DDT VER. 1.0

NEXT PC

015C 0000

-XP

P=0000 100y Set PC to beginning of program

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

-L10Dy List bad OPCODE

010D JNC 0119
0110 LX! H,0146
-Abort list with rubout
-A10Dy Assemble new OPCODE

010D JC 119
0110y
-L1004 List starting section of program

0100 LXl H,0146
0103 MVI M,01
0105 LXl H,0147
0108 MVI M,00
-Abort list with rubout
-A103y Change switch initialization to 00

0103 MVI M,0y
0105,
- C Return to CP/M with ctl-C (GO works as well)

SAVE 1 SORT.COMy Save 1 page (256 bytes, from 100H to 1ffH) on disk in case

there is need to reload later
A>DDT SORT.COMy Restart DDT with saved memory image

16K DDT VER 1.0

NEXT PC

0200 0100 COM file always starts with address 100H
-Gy Run the program from PC=100H

*0118 Programmed stop (RST 7) encountered

-D148
Data properly sorted

0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C O1 E8 03 01 80 00 00 00 00 2.D.D.........

0160 00 00 00 00 00 00 OO OO OO 00O OO0 00 OO OO OO O0................
0170 00 00 00 00 00 00 00 OO OO0 00 OO 00 OO0 OO0 00 OO

-GO f Return to CP/M

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

A>ED SORT.ASMy Make changes to original program

*N,0°Z0TTy Find next “,0”
MVI M, 0 1=0
*-4 Up one line in text
LXI H, | ;ADDRESS INDEX

-y Up another line
MVI M, 1 ;SET TO 1 FOR FIRST ITERATION

*KTy Kill line and type next line

LXI H 1 :ADDRESS INDEX
*ly Insert new line

MVI M, O :ZERO SW
ng

LXI H, I :ADDRESS INDEX
*NJNC "Z0Ty

JNC*Ty

CONT ;CONTINUE IF | <= (N-2)
*-2DIC "ZOLTy

JC CONT ;CONTINUE IF | <= (N-2)
“Ey Source from disk A

HEX to disk A

A>ASM SORT.AAZ;— Skip PRN file
CP/M ASSEMBLER - VER 1.0

015C Next address to assemble
003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEX; Test program changes

16K DDT VER 1.0
NEXT PC

015C 0000
-G100y

*0118
-D148y
Data sorted
0148 05 00 07 00 14 00 1E OO
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D..........
0160 00 00 00 00 00 00 00 OC 00 00 00 00 OO0 OO 00 OO

-Abort with rubout

-G0y Return to CP/M—program checks OK.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M Dynamic
Debugging Tool

4.1 Introduction

The DDT program allows dynamic interactive testing and debugging of programs
generated in the CP/M environment. Invoke the debugger with a command of one of the
following forms:

DDT
DDT filename.HEX
DDT filename.COM

where “filename” is the name of the program to be loaded and tested. In both cases, the
DDT program is brought into main memory in place of the Console Command Processor
(the user should refer to Chapter 5 for standard memory organization), and resides
directly below the Basic Disk Operating System portion of CP/M. The BDOS starting
address, located in the address field of the JMP instruction at location 5H, is altered to
reflect the reduced Transient Program Area size.

The second and third forms of the DDT command perform the same actions as the
first, except there is a subsequent automatic load of the specified HEX or COM file. The
action is identical to the sequence of commands

DDT
Ifilename.HEX or Ifilename.COM
R
where the I and R commands set up and read the specified program to test. (The user
should see the explanation of the I and R commands below for exact details.)
Upon initiation, DDT prints a sign-on message in the format

DDT VER m.m

where m.m is the revision number.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69

oo

Following the sign-on message, DDT prompts the operator with the character “-” and
waits for input commands from the console. The operator can type any of several single
character commands, terminated by a carriage return to execute the command. Each line
of input can be line-edited using the standard CP/M controls

rubout remove the last character typed
ctl-U remove the entire line, ready for retyping
ctl-C system reboot.

Any command can be up to 32 characters in length (an automatic carriage return is
inserted as the 33rd character), where the first character determines the command type

enter assembly language mnemonics with operands

A

D display memory in hexadecimal and ASCII
F fill memory with constant data

G

begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

X Cc 4 o 13 Z -

examine and optionally alter the CPU state.

The command character, in some cases, is followed by zero, one, two, or three hexade-
cimal values, which are separated by commas or single blank characters. AllDDT numeric
output is in hexadecimal form. The commands are not executed until the carriage return
is typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT by using either
a ctl-C or GO (jmp to location 0000H), and save the current memory image by using a
SAVE command of the form

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disk. The number of blocks
is determined by taking the high order byte of the address in the TPA and converting this
number to decimal. For example, if the highest address in the Transient Program
Area is 1234H, the number of pages is 12H or 18 in decimal. The operator could type a
ctl-C during the debug run, returning to the Console Command Processor level, followed

by

SAVE 18 X.COM

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The memory image is saved as X.COM on the diskette and can be directly executed by
typing the name X. If further testing is required, the memory image can be recalled by

typing
DDT X.COM

which reloads the previously saved program from location 100H through page 18
(23FFH). The CPU state is not a part of the COM file; thus, the program must be
restarted from the beginning to test it properly.

4.2 DDT Commands

The individual commands are detailed below. In each case, the operator must wait for
the prompt character (-) before entering the command. If control is passed to a program
under test and the program has not reached a breakpoint, control can be returned to DDT
by executing a RST 7 from the front panel. In the explanation of each command, the
command letter is shown in some cases with numbers separated by commas, and the
numbers are represented by lower case letters. These numbers are always assumed to be
in a hexadecimal radix and from one to four digits in length (longer numbers will be
automatically truncated on the right).

Many of the commands operate upon a “CPU state” that corresponds to the program
under test. The CPU state holds the registers of the program being debugged and initially
contains zeroes for all registers and flags except for the program counter (P) and stack
pointer (S), which default to 100H. The program counter is subsequently set to the
starting address given in the last record of a HEX file if a file of this formis loaded (see the

[and R commands).

4.2.1 The A (Assembly) Command

DDT allows in-line assembly language to be inserted into the current memory image
using the A command, that takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT prompts the
console with the address of the next instruction to fill and reads the console, looking for
assembly language mnemonics (see the Intel 8080 Assembly Language Reference Card
for a list of mnemonics), followed by register references and operands in absolute
hexadecimal form. Each successive load address is printed before reading the console. The
A command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the memory
segment using the DDT disassembler (see the L command).

The user should note that the assembler/disassembler portion of DDT can be overlaid
by the transient program being tested, in which case the DDT program responds with an
error condition when the A and L commands are used.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 71

4.2.2 The D (Display) Command

The D command allows the operator to view the contents of memory in hexadecimal
and ASCII formats. The forms are
D
Ds
Ds,f

In the first case, memory is displayed from the current display address (initially 100H) and
continues for 16 display lines. Each display line takes the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccececececcecccee

where aaaa is the display address in hexadecimal and bb represents data present in
memory starting at aaaa. The ASCII characters starting at aaaa are to the right (repres-
ented by the sequence of ¢’s), where nongraphic characters are printed as a period (.). The
user should note that both upper and lower case alphabetics are displayed, and will
appear as upper case symbols on a console device that supports only upper case. Each
display line gives the values of 16 bytes of data, with the first line truncated so that the
next line begins at an address that is a multiple of 16.

The second form of the D command is similar to the first, except that the display
address is first set to address s. The third form causes the display to continue from
address s through address f. In all cases, the display address is set to the first address not
displayed in this command, so that a continuing display can be accomplished by issuing
successive D commands with no explicit addresses.

Excessively long displays can be aborted by pushing the return key.

4.2.3 The F (Fill) Command

The F command takes the form
Fs,f,c

where s is the starting address, f is the final address, and c is a hexadecimal byte constant.
DDT stores the constant c at address s, increments the value of s and tests against f. If s
exceeds f, the operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

4.24 The G (Go) Command

A program is executed using the G command, with up to two optional breakpoint
addresses. The G command takes the forms
G
Gs
Gs,b
Gs,b,c
G,b
G,b,c

72 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The first form executes the program at the current value of the program counter in the
current machine state, with no breakpoints set (the only way to regain control in DDT is
through a RST 7 execution). The current program counter can be viewed by typing an X
or XP command. The second form is similar to the first except that the program counter
in the current machine state is set to address s before execution begins. The third form is
the same as the second, except that program execution stops when address b is encoun-
tered (b must be in the area of the program under test). The instruction at location bis not
executed when the breakpoint is encountered. The fourth form is identical to the third,
except that two breakpoints are specified, one at b and the other at c. Encountering either
breakpoint causes execution to stop, and both breakpoints are cleared. The last two forms
take the program counter from the current machine state and set one and two break-
points, respectively.

Execution continues from the starting address in real-time to the next breakpoint.
There is no intervention between the starting address and the break address by DDT. If
the program under test does not reach a breakpoint, control cannot return to DDT
without executing a RST 7 instruction. Upon encountering a breakpoint, DDT stops
execution and types

*d

where d is the stop address. The machine state can be examined at this point using the X
(Examine) command. The operator must specify breakpoints that differ from the pro-
gram counter address at the beginning of the G command. Thus, if the current program
counter is 1234H, then the commands

G,1234

and

G400,400

both produce an immediate breakpoint without executing any instructions.

4.2.5 The | (Input) Command

The I command allows the operator to insert a file name into the default file control
block at 5CH (the file control block created by CP/M for transient programs is placed at
this location; see Chapter 5). The default FCB can be used by the program under test as if
it had been passed by the CP/M Console Processor. The user should note that this file
name is also used by DDT for reading additional HEX and COM files. The form of the |

command is
Ifilename

or
Ifilename.typ

If the second form is used and the filetype is either HEX or COM, subsequent R
commands can be used to read the pure binary or hex format machine code. (Section 4.2.8
gives further details.)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

4.2.6 The L (List) Command

The L command is used to list assembly language mnemonics in a particular program
region. The forms are

L
Ls
Ls,f

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code. The
last form lists disassembled code from s through address f. In all three cases, the list
address is set to the next unlisted location in preparation for a subsequent L command.
Upon encountering an execution breakpoint, the list address is set to the current value of
the program counter (G and T commands). Again, long typeouts can be aborted using the
return key during the list process.

4.2.7 The M (Move) Command

The M command allows block movement of program or data areas from one location
to another in memory. The form is

Ms,f,d

where s is the start address of the move, f is the final address, and d is the destination
address. Data are first removed from s to d, and both addresses are incremented. If s
exceeds f, the move operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

The R command is used in conjunction with the I command to read COM and HEX
files from the diskette into the transient program area in preparation for the debug run.
The forms are

R
Rb

where b is an optional bias address that is added to each program or data address as it is
loaded. The load operation must not overwrite any of the system parameters from 000H
through OFFH (i.e., the first page of memory). If b is omitted, then b=0000 is assumed.
The R command requires a previous | command, specifying the name of a HEX or COM
file. The load address for each record is obtained from each individual HEX record, while
an assumed load address of 100H is used for COM files. The user should note that any
number of R commands can be issued following the [command to reread the program
under test, assuming the tested program does not destroy the default area at SCH. Any
file specified with the filetype “COM” is assumed to contain machine code in pure binary
form (created with the LOAD or SAVE command), and all others are assumed to contain
machine code in Intel hex format (produced, for example, with the ASM command.)

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Recall that the command
DDT filename.filetype

which initiates the DDT program, is equivalent to the commands

DDT
-Ifilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error indicator “?”
(file cannot be opened, or achecksum error occurred in a HEX file), or with aload message

taking the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program and pppp is the assumed
program counter (100H for COM files, or taken from the last record if a HEX file is

specified).

4.29 The S (Set) Command

The S command allows memory locations to be examined and optionally altered. The
form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of memory.
DDT responds with a numeric prompt, giving the memory location, along with the data
currently held in memory. If the operator types a carriage return, the data are not altered.
If a byte value is typed, the value is stored at the prompted address. In either case, DDT
continues to prompt with successive addresses and values until either a period (.) is typed
by the operator or an invalid input value is detected.

4.2.10 The T (Trace) Command

The T command allows selective tracing of program execution for 1to0 65535 program
steps. The forms are

T
Tn

In the first case, the CPU state is displayed and the next program step is executed. The
program terminates immediately, with the termination address displayed as

*hhhh
where hhhh is the next address to execute. The display address (used in the D command)

is set to the value of Hand L, and the list address (used in the L command) is set to hhhh.
The CPU state at program termination can then be examined using the X command.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

The second form of the T command is similar to the first, except that execution is
traced for n steps (n is a hexadecimal value) before a program breakpoint occurs. A
breakpoint can be forced in the trace mode by typing a rubout character. The CPU state is
displayed before each program step is taken in trace mode. The format of the display is the
same as described in the X command.

The user should note that program tracing is discontinued at the CP/M interface and
resumes after return from CP/M to the program under test. Thus, CP/M functions that
access I/O devices, such as the diskette drive, run in real-time, avoiding 1/O timing
problems. Programs running in trace mode execute approximately 500 times slower than
real-time since DDT gets control after each user instruction is executed. Interrupt
processing routines can be traced, but commands that use the breakpoint facility (G, T,
and U) accomplish the break using an RST 7 instruction, which means that the tested
program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupts enabled, which may cause problems if asynchronous
interrupts are received during tracing.

The operator should use the return key to get control back to DDT during trace,
rather than executing an RST 7, to ensure that the trace for current instruction is
completed before interruption.

4.2.11 The U (Untrace) Command

The Ucommand is identical to the T command except that intermediate program steps
are not displayed. The untrace mode allows from 1 to 65535 (OFFFFH) steps to be
executed in monitored mode and is used principally to retain control of an executing
program while it reaches steady state conditions. All conditions of the T command apply
to the U command.

4.2.12 The X (Examine) Command

The X command allows selective display and alteration of the current CPU state for
the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry flag (0/1)
Z Zero flag (0/1)
M Minus flag (0/1)
E Even parity flag (0/1)

Interdigit carry (0/1)
Accumulator (0-FF)
BC register pair (0-FFFF)
DE register pair (0-FFFF)
HL register pair (O-FFFF)
Stack pointer (O-FFFF)
Program counter (0-FFFF)

T W T O O >»

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

In the first case, the CPU register state is displayed in the format
CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double-byte quantity
corresponding to the register pair. The “inst” field contains the disassembled instruction,
which occurs at the location addressed by the CPU state’s program counter.

The second form allows display and optional alteration of register values, where r is
one of the registers given above (C,Z, M, E, I, A, B, D, H, S, or P). In each case, the flag or
register value is first displayed at the console. The DDT program then accepts input from
the console. If a carriage return is typed, the flag or register valueis not altered. If a value
in the proper range is typed, the flag or register value is altered. The user should note that
BC, DE, and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

4.3 Implementation Notes

The organization of DDT allows certain nonessential portions to be overlaid to
gain a larger transient program area for debugging large programs. The DDT program
consists of two parts: the DDT nucleus and the assembler/disassembler module. The
DDT nucleus is loaded over the Console Command Processor, and, although loaded with
the DDT nucleus, the assembler/disassembler is overlayable unless used to assemble or
disassemble.

In particular, the BDOS address at location 6H (address field of the JMP instruction at
location 5H) is modified by DDT to address the base location of the DDT nucleus, which,
in turn, contains a JMP instruction to the BDOS. Thus, programs that use this address
field to size memory see the logical end of memory at the base of the DDT nucleus rather
than the base of the BDOS.

The assembler/disassembler module resides directly below the DDT nucleus in the
transient program area. If the A, L, T, or X commands are used during the debugging
process, the DDT program again alters the address field at 6H to include this module,
further reducing the logical end of memory. If a program loads beyond the beginning of
the assembler/disassembler module, the A and L commands are lost (their use produces a
“?” in response) and the trace and display (T and X) commands list the “inst” field of the
display in hexadecimal, rather than as a decoded instruction.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

4.4 An Example

The following example shows an edit, assemble, and debug for a simple program that
reads a set of data values and determines the largest value in the set. The largest value is
taken from the vector and stored into “LARGE” at the termination of the program

A>ED SCAN.ASM

*Il

LOOP
LOOP:

’

NFOUND

4

VECT:
LEN
LARGE:

1-Z
*BOP/

LOOP:

)

NFOUND:

78

Create source program;
“#” represents carriage return.

ORG 1-00H ‘START OF TRANSIENT
;AREA ¢

MVI B, LEN ;LENGTH OF VECTOR TO SCANy

MVI C,0 ;LARGER_RST VALUE SO FARy

LXI H, VECT :BASE OF VECTORY

MOV AM :GET VALUE/Y

suB C ;LARGER VALUE IN C?%

JNC NFOUND :JUMP IF LARGER VALUE NOT
;FOUNDY

NEW LARGEST VALUE. STORE IT TOCY

MOV C A

INX H :TO NEXT ELEMENTY

DCR B :MORE TO SCAN?y

JNZ LOOP :FOR ANOTHER y

END OF SCAN, STORE Cy

MOV A C :GET LARGEST VALUE /

STA LARGE/

JMP 0 ;REBOOT/

TEST DATA

DB 2.0.4,3,5,6,1,5

EQU $-VECT :LENGTH

DS 1 :LARGEST VALUE ON EXITy

ENDY

ORG 100H :START OF TRANSIENT AREA

MVI B,LEN :LENGTH OF VECTOR TO SCAN

MVI C,0 :LARGEST VALUE SO FAR

LXI H,VECT :BASE OF VECTOR

MOV AM :GET VALUE

sSuB C :LARGER VALUE IN C?

JNC NFOUND :JUMP IF LARGER VALUE NOT
; FOUND

NEW LARGEST VALUE, STOREITTO C

MOV CA

INX H :TO NEXT ELEMENT

DCR B :MORE TO SCAN?

JNZ LOOP :FOR ANOTHER

END OF SCAN, STORE C

MOV AC ‘GET LARGEST VALUE

STA LARGE

JMP 0 :REBOOT

TEST DATA

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

VECT: DB 2,0,4,3,56,1,5

LEN EQU $-VECT ;LENGTH
LARGE: DS 1 ;LARGEST VALUE ON EXIT
END

*Ey =——End of edit

A>ASM SCANy Start Assembler

CP/M ASSEMBLER - VER 1.0

0122

002H USE FACTOR

END OF ASSEMBLY Assembly complete; lock at program listing

A>TYPE SCAN.PRN /¥

Code address Source program

0100 ORG 100H ;START OF TRANSIENT AREA
0100 0608 MVI B.LEN ;LENGTHOFVECTOR TO SCAN
0102 OE00 Machine code MVI C0 ;LARGEST VALUE SO FAR
0104 211901 LXI H,VECT. ;BASE OF VECTOR
0107 7E LOOP: MOV AM ;GET VALUE
0108 91 SuBC ;LARGER VALUE IN C?
0109 D20DO01 JNC NFOUND ;JUMP IF LARGER VALUE NOT
;FOUND
; NEW LARGEST VALUE, STOREITTOC
010C 4F MOV C, A
010D 23 NFOUND:INX H ;TO NEXT ELEMENT
010E 05 DCR B ;MORE TO SCAN?
010F C20701 JNZ LOOP ;FOR ANOTHER
; END OF SCAN, STORE C
0112 79 MOV A, C ;GET LARGEST VALUE
0113 322101 STA LARGE
0116 C30000 JMP 0O ;REBOOT

Code—data listing ;
truncated \ : TEST DATA
0119 0200040305\ VECT: DB 2,0,4,3,56,1,5

0008 = Value of LEN EQUS$-VECT LENGTH
0121 equate LARGE: DS 1 ;LARGEST VALUE ON EXIT
0122 END

A>DDT SCAN.HEXy Start debugger using hex format machine code

DDT VER 1.0

NEXT PC Next instruction
01210000 to execute at
-X¥ \Last load address + 1 PC=0

COZOMOEOI0 A=00 B30000 D=0000 H=0000 $=0100 P=0000 OUT 7F
-XPy

P=0000 100y Change PC to 100

Examine registers before debug run

-X¥# Look at registers again

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-L100y N

PC changed:! Next instruction

0100 MVI B.08 W to execute at PC=100
0102 MVI C,00
0104 LXI H,0119
0107 MOV AM
0108 SUB C Disassembled machine
0109 JNC 010D # code at 100H
010C MOV CA (see source listing
010D INX H for comparison)
010E DCR B
010F JNZ 0107
0112 MOV AC

Ly
0113 STA 0121 W
0116 JMP 0000
0119 STAX B
011A NOP A little more machine
011B INR B code. Note that pro-
011C INX B gram ends at location
011D DCR B 116 with a JMP to
O11E MVI B,01 0000. Remainder of
0120 DCR B listing is assembly of
0121 LXI D,2200 data.
0124 LXI H,0200

-A116y Enter in-line assembly mode to change the JMP to 0000 into a RST 7, which
will cause the program under test to return to DDT if 116H is ever executed.
0116 RST 7

0117¢ (Single carriage return stops assemble mode)

-L113¢ List code at 113H to check that RST 7 was properly inserted

0113 STA 0121

0116 RST 07 in place of JMP
0117 NOP

0118 NOP

0119 STAX B

011A NOP

011B INR B

011C INX B

-X§ Look at registers

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08

Execute Program for one stop. Initial CPU state, before/is executed
C0ZOMOEOI0O A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI’B,08*Q102
-T¥ Automatic breakpoint/

80 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Trace one step again (note O8H in B)
CO0ZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00*0104
T Trace again (Register C is cleared)
C0ZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI| H,0119*0107
-T3¢ Trace three steps
C0ZOMOEOIO A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV AM
C0ZOMOEOI0O A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D*010D

-D119y Display memory starting at 119H. Automatic breakpoint at 10DH
0119(02 00 04 03 05 06 01). Program data — Lowercase x
0120 {05/11 00 22 21 00 02 7E EB 77 13 23 EB 0B @8 B1..."!.. .W.#.(X)
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00.'...)

0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 Data are displayed
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 inASCII witha“.”
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 in the position of
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 nongraphic = .
01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0o ¢characters =
01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00oevnnrnn...
01C0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -..eovvnvnnnnn..
=Xy
Current CPU state

COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
-T5

’Trace 5 steps from current CPU state
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
COZOMOEOI1 A=02 B=0800 D=0000 H=011A S=0100 P=010E DCR B
COZOMOEOI1 A=02 B=0700 D=0000 H=011A S=0100 P=010F JNZ 0107
COZOMOEOI1 A=02 B=0700 D=0000 H=011A S=0100 P=0107 MOV AM
COZOMOEOI1 A=00 B=0700 D=0000 H=011A S=0100 P=0108 SUB C*0109

Usy) o) Automatic breakpoint /
Trace without listing intermediate states

CO0Z1MOE111 A=00 B=0700 D=0000 H=011A S=0100 P=0109 JNC 010D*0108
Xy
»~CPU state at end of U5

COZOMOE111 A=04 B=0600 D=0000 H=011B S=0100 P=0108 SUB C
-Gy Run program from current PC until completion (in real-time)

*0116 breakpoint at 116H, caused by executing RST 7 in machine code.
Xy

CPU state at end of program
C0Z1MOE111 A=00 B=0000 D=0000 H=0121 S=0100 P=0116 RST 07

-XP,
¥ ~~Examine and change program counter
P=0116 100y

-X/

C0Z1MOE111 A=00 B=0000 D=0000 H=0121 S=0100 P=0100 MVI B,08
-T10y

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

First data element

Trace 10 (hexadecimal) steps

Current largest value

Subtract for comparison, C

COZ1MOE1I1 A
COZ1MOE1I1T A
COZ1MOE1I1 A
COZ1MOE1I1 A
COZ1MOE1I1T A

CO0ZOMOEOI1T A q 0119
CO0ZOMOEOI1 A=02 B=0800 D=0000 H=0119
CO0ZOMOEOI1 A=02 B=0800 D=0000 H=011A
CO0ZOMOEOI1 A=02 B=0700 D=0000 H=011A
CO0ZOMOEOI1 A=02 B=0700 D=0000 H=011A
C0ZOMOEOI1 A=00 B=0700 D=0000 H=011A
CO0Z1MOE1iI1 A=00 B=0700 D=0000 H=011A
CO0Z1MOE111 A=00 B=0700 D=0000 H=011A
CO0Z1MOE1I1 A=00 B=0700 D=0000 H=011B
COZOMOE111 A=00 B=0600 D=0000 H=011B
CO0ZOMOE1I1 A=00 B=0600 D=0000 H=011B
-A109¢ Insert a “hot patch” into

the machine code

0109 JC 100y to change the

010C; JNC to JC

-GOY

Stop DDT so that a version of

the patched program can be saved

A>SAVE 1 SCAN.COM /Program resides on first
page, so save 1 page.

A>DDT SCAN.COM

DDT VER 1.0

NEXT PC

0200 0100

-L100/ List some code
0100 MV1 B,08
0102 MVI C,00
0104 LXlI H,0119
0107 MOV AM
0108 sSuBC
0109 JC 010D
010C MOV CA
010D INX H
O10E DCR B
010F JNZ 0107
0112 MOV A,C
-XPy

P=0100y

$=0100
$=0100
S$=0100
S=0100
S=0100
S$=0100
S$=0100
S$=0100
S$=0100
$=0100
$=0100
S$=0100
S$=0100
S$=0100
$=0100
S$=010

P=0100 MVI B,08
P=0102 MVI C,0
P=0104 LXI H,0419

P=0108 SUB C
P=0109 JNC 010D

P=010E PCR B
P=010F /UNZ 0107
P=0107 MOV AM
P=01g8 SUB C

P=0/09 JNC 010D
P=010D INX H

~010E DCR B

=010F JNZ 0107
P=0107 MOV A,M*0108

Program should have moved the
value from A into C since A>C.
Since this code was not executed,
it appears that the JNC should
have been a JC instruction

’\Restart DDT with the save memory
image to continue testing

Previous patch is present in X.COM

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

-T10y
Trace to see how patched version operates
C0ZOMOEOIO A=00 B=0000 D=0000 H=0000

Data is moved from A to C
P=0100 MVI B,08

C0ZOMOEOIO A=00 B=0800 D=0000 P=0102 MVi C,00
COZOMOEOIO A=00 B=0800 0100 P=0104 LXI H,0119
C0ZOMOEOIO A=00 B=0800 0100 P=0107 MOV AM
C0ZOMOEOIO A;@ B=0800 0100 P=0108 SUB C

COZOMOEOI1 A=02 “g=0800
C0ZOMOEOI1 A=02 B>Q800
COZOMOEOI1 A

P=0109 JC 010D
$=0100 P=010C MOV C,A
02 B=0 D=0000 H=0119 S=0100 P=010D INX H

C0ZOMOEOI1 A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B
CO0ZOMOEOI1 A=02 B=0702 D=0000 H=011A S=0100 P=010F JNZ 0107
C0ZOMOEOI1 A=02 B=0702 D=0000 H=011A S=0100 P=0107 MOV AM
C0ZOMOEOI1 A=00 B=0702 D=0000 H=011A S=0100 P=0108 SUB C
C1ZOM1EOI0O A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D
C1Z0OM1EOI0O A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H
C1Z0M1EOI0 A=FE B=0702 D=0000 H=011B S=0100 P=010E DCR B
C1ZOMOE111 A=FE B=0602 D=0000 H=011B S=0100 P=010F JNZ 0107*0107
-X¥ Breakpoint after 16 steps/

C1ZOMOE111 A=FE B=0602 D=0000 H=011B S=0100 P=0107 MOV AM
-G,108y Run from current PC and breakpoint at 108H

*0108
Xy
Next data item

C1ZOMOE1I11 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C
T

f Single step for a few cycles
C1ZOMOE111 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C*0109
-T*

C0ZOMOEOI1 A=02 B=0602 D=0000 H=011B S=0100 P=0109 JC 010D*010C
-X/

CO0ZOMOEOI1 A=02 B=0602 D=0000 H=011B S=0100 P=010C MOV C,A
-Gy Run to completion

*0116
-X f

C0Z1MOE111 A=03 B=0003 D=0000 H=0121 S=0100 P=0116 RST 07
-S121, Look at the value of “LARGE”

0121 03y Wrong value!

0122 00y
0123 22
0124 21,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

0125 00y

0126 02y

0127 7Ey . End of the S command
-L100,

0100 MVI B,08)

0102 MVI C,00

0104 LXI H,0119

0107 MOV AM

0108 SUB C

0109 JC 010D

010C MOV CA

010D INX H

010E DCR B

010F JUNZ 0107

0112 MOV AC

-L ’ L Review the code

0113 STA 0121

0116 RST 07

0117 NOP

0118 NOP

0119 STAX B

011A NOP

011B INR B

011C INX B

011D DCR B

011E MVI B,01

0120 DCR B J

-XPy

P=0116 100y Reset the PC

Ty
Single step, and watch data values

C0Z1MOE1I1 A=03 B=0003 D=0000 H=0121 S=0100 P=0100 MVI B,08*0102

Ty

CO0Z1MOE1I1 A=03 B=0803 D=0000 H=0121 S=0100 P=0102 MVI C,00*0104
-T

/ Count set v “Largest” set
C0Z1MOE1I1 A=03 B=0800 D=0000 H=0121 S=0100 P=0104 LXI H,0119*0107
T
f Base address of data set
C0Z1MOE1I11 A=03 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A M*0108
-T
/ First data item brought to A
CO0Z1MOE1I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C*0109
Ty

C0ZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JC 010D*010C
-T,

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

C0ZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=010C MOV C,A*010D
-T;
First data item moved to C correctly

C0ZOMOEO!I1 A=02 B=0802 D=0000 H=0119 S=0100 P=010D INX H*010E
-T’
C0ZOMOEOI1 A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B*010F
-T’
COZOMOEOI1 A=02 B=0702 D=0000 H=011A S=0100 P=010F JNZ 0107*0107
-T/
C0ZOMOEOI1 A=02 B=0702 D=0000 H=011A S=0100 P=0107 MOV A,M*0108
-Ty

Second data item brought to A
C0ZOMOEOI1 A=00 B=0702 D=0000 H=011A S=0100 P=0108 SUB C*0109
-T’

Subtract destroys data value that was loaded!
C1ZOM1EOI0 A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D*010D
-Ty
C1ZOM1EOI0 A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H*010E
-L100y
0100 MvVI B,08
0102 MVI C.00
0104 LXI H,0119
g}gg ggg é'ﬁﬂ__'l'his should have been a CMP so that register A
0109 JC 010D would not be destroyed.
010C MOV C.A
010D INX H
010E DCR B
010F JNZ 0107
0112 MOV AC
-A108y
0108 CMP C, Hot patch at 108H changes SUB to CMP
0109
-G0y Stop DDT for SAVE

A>SAVE 1 SCAN.COM

Save memory image

A>DDT SCAN.COMy Restart DDT

DDT VER 1.0
NEXT PC
0200 0100
-XPy

P=0100

L1164

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85

0116 RST 07

81 1; I':llgg Look at code to see if it was properly loaded
0119 STAX B (long typeout aborted with rubout)
011A NOP

-G,116; Run from 100H to completion
*0116

-XCy Look at carry (accidental typo)
C1y

-Xy Look at CPU state

C1Z1MOE111 A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07
-8121y Look at “large”—it appears to be correct.

0121 06y
0122 00y

0123 22

-GOy Stop DDT

A>ED SCAN.ASMy Re-edit the source program, and make both changes

“NSUBy
*OLTy

lZ suB ¢C .LARGER VALUE IN C?
*SSUBIZCMP1ZOLTy

CMP C ;LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUENOT FOUND
*SNCtZC1Z0LTy
JC NFOUND JUMP IF LARGER VALUE NOT FOUND
*E/
Re-assemble, selecting source from disk A
A>ASM SCAN.AAZ; «—Hex to disk A
Print to Z (selects no print file)
CP/M ASSEMBLER VER 1.0

0122

002H USE FACTOR
END OF ASSEMBLY

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

A>DDT SCAN.HEXy Re-run debugger to check changes

DDT VER 1.0
NEXT PC
0121 0000
-L116y
0116 JMP 0000 Check to ensure end is still at 116H
0119 STAX B
011A NOP
011B INR B
- (rubout)

-G100,116y Go from beginning with breakpoint at end

*0116 Breakpoint reached

-D121y Look at “LARGE”
Correct value computed

0121 22 21 00 02 7TE EB77 13 23 EBOB 78 B1 .. '"I.. . W.#..X.
0130 C2 27 01 C303 29 00 00 00 00 00 OO 00O OO0 OO OO)..........
0140 00 00 0OC 00 00 00 OO 00 0O OO0 00 00 0O 00 OO0 OO

- (rubout) Aborts long type-out

GOy Stop DDT, debug session complete.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

CP/M 2 System Interface

5.1 Introduction

This chapter describes CP/M, release 2, system organization including the structure
of memory and system entry points. The intention is to provide necessary information
required to write programs that operate under CP/M and that use the peripheral and disk
I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic 1/O System (BIOS), the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the
Transient Program Area (TPA). The BIOS is a hardware-dependent module that defines
the exact low level interface with a particular computer system that is necessary for
peripheral device I/O. Although a standard BIOS is supplied by Digital Research, explicit
instructions are provided for field reconfiguration of the BIOS to match nearly any
hardware environment (see Chapter 6). The BIOS and BDOS are logically combined into
a single module with a common entry point and referred to as the FDOS. The CCP is a
distinct program that uses the FDOS to provide a human-oriented interface with the
information that is cataloged on the backup storage device. The TPA is an area of memory
(i.e., the portion that is not used by the FDOS and CCP) where various nonresident
operating system commands and user programs are executed. The lower portion of
memory is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown below.

High
Memory FDOS (BDOS+BIOS)
FBASE:

CcCpP
CBASE:

TPA
TBASE:

System Parameters

BOOT:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE
vary from version to version and are described fully in Chapter 6. All standard CP/M
versions, however, assume BOOT = 0000H, which is the base of random access memory.
The machine code found at location BOOT performs a system “warm start,” which loads
and initializes the programs and variables necessary to return control to the CCP. Thus,
transient programs need only jump to location BOOT to return control to CP/M at the
command level. Further, the standard versions assume TBASE = BOOT+0100H, which is
normally location 0100H. The principal entry point to the FDOS is at location
BOOT+0005H (normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each
command line takes one of the forms:

command
command filel

command filel file2

where “command” is either a built-in function such as DIR or TYPE or the name of a
transient command or program. If the command is a built-in function of CP/M, it is
executed immediately. Otherwise, the CCP searches the currently addressed disk for a
file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program that executes in the
TPA and thus implicitly originates at TBASE in memory. The CCP loads the COM file
from the disk into memory starting at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or
two file control block (FCB) names in the system parameter area. These optional FCBs are
in the form necessary to access files through the FDOS and are described in the next
section.

The transient program receives control from the CCP and begins execution, using the
I/O facilities of the FDOS. The transient program is “called” from the CCP. Thus, it can
simply return to the CCP upon completion of its processing or can jump to BOOT to pass
control back to CP/M. In the first case, the transient program must not use memory
above CBASE, while in the latter case, memory up through FBASE-1 can be used.

The transient program can use the CP/M /O facilities to communicate with the
operator’s console and peripheral devices, including the disk subsystem. The I/O system
is accessed by passing a function number and an information address to CP/M through
the FDOS entry point at BOOT+0005H. In the case of a disk read, for example, the
transient program sends the number corresponding to a disk read, along with the address
of an FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and returns
with either a disk read completion indication or an error number indicating that the disk
read was unsuccessful.

920 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

5.2 Operating System Call Conventions

This section provides detailed information for performing direct operating system
calls from user programs. Many of the functions listed below, however, are accessed
more simply through the I/O macro library provided with the MAC macro assembler and
listed in the Digital Research manual entitled, MAC Macro Assembler: Language Manual and
Appiications Guide.

CP/M facilities that are available for access by transient programs fall into two general
categories: simple device I/C and disk file I/O. The simple device operations include:
Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations that perform disk 1/O are

Disk System Reset

Drive Selection

File Creation

File Open

File Ciose

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 91

As mentioned above, access to the FDOS functions is accomplished by passing a
function number and information address through the primary point at location
BOOT+0005H. In general, the function number is passed in register C with the informa-
tion address in the double byte pair DE. Single byte values are returned in register A, with
double byte values returned in HL (a zero value is returned when the function number is
out of range). For reasons of compatibility, register A = L and register B = H upon return
in all cases. The user should note that the register passing conventions of CP/M agree
with those of Intel’s PL/M systems programming language. CP/M functions and their
numbers are listed below.

0 System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console Output 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console I/O 25 Return Current Disk

7 Get 1/O Byte 26 Set DMA Address

8 Set I/O Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive

40 Write Random with Zero Fill

(Functions 28 and 32 should be avoided in application programs to maintain upward
compatibility with CP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to an
eight-level stack area with the CCP return address pushed onto the stack, leaving seven
levels before overflow occurs. Although this stack is usually not used by a transient
program (i.e., most transients return to the CCP through a jump to location 0000H), it is
sufficiently large to make CP/M system calls since the FDOS switches to a local stack at
system entry. The assembly language program segment below, for example, reads
characters continuously until an asterisk is encountered, at which time control returns to
the CCP (assuming a standard CP/M system with BOOT = 0000H).

BDOS EQU 0005H ;STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA
NEXTC: Mvi C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN <A>
CPI ™ ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M implements a named file structure on each disk, providing a logical organization
that allows any particular file to contain any number of records from completely empty to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file
data area. The disk file names are in three parts: the drive select code, the filename
consisting of one to eight nonblank characters, and the filetype consisting of zero to three
nonblank characters. The filetype names the generic category of a particular file, while
the filename distinguishes individual files in each category. The filetypes listed below
name a few generic categories that have been established, although they are somewhat
arbitrary.

ASM Assembler Source PLI PLJ/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM Command File $%% Temporary File

Source files are treated as a sequence of ASCII characters, where each “line” of the
source file is followed by a carriage-return line-feed sequence (0DH followed by 0AH).
Thus one 128-byte CP/M record could contain several lines of source text. The end of an
ASCII file is denoted by a control-Z character (1AH) or a real end-of-file returned by the
.CP/M read operation. Control-Z characters embedded within machine code files (e.g.,
COM files) are ignored, however, and the end-of-file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128 bytes each,
numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file.
However, the user should note that although the records may be considered logically
contiguous, they may not be physically contiguous in the disk data area. Internally, all
files are divided into 16K byte segments called logical extents, so that counters are easily
maintained as 8-bit values. The division into extents is discussed in the paragraphs that
follow; however, they are not particularly significant for the programmer, since each
extent is automatically accessed in both sequential and random access modes.

In the file operations starting with function number 15, DE usually addresses a file
control block (FCB). Transient programs often use the default file control block area
reserved by CP/M at location BOOT+005CH (normally 005CH) for simple file opera-
tions. The basic unit of file information is a 128-byte record used for all file operations;
thus, a default location for disk 1/O is provided by CP/M at location BOOT+0080H
(normally 0080H), which is the initial default DMA address (see function 26). All direc-
tory operations take place in a reserved area that does not affect write buffers as was the
case in release 1, with the exception of Search First and Search Next, where compatibility
is required.

The FCB data area consists of a sequence of 33 bytes for sequential access and a series
of 36 bytes in the case when the file is accessed randomly. The default FCB normally
located at 005CH can be used for random access files, since the three bytes starting at
BOOT+007DH are available for this purpose. The FCB format is shown with the
following fields:

|dr [f1 [f2 [/ /f8 |t1 |t2 |t3 |ex |s1 |s2 |rc |dO |/ Adn]cr |r0 |r1 |r2|
00 01 02 ... 08 09 10 11 12 13 14 15 16 .. 31 32 33 34 35

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

where

dr drive code (0-16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

f1...f8 contain the file name in ASCII upper case, with
high bit =0

t1,t2,t3 contain the file type in ASCII upper case, with high
bit = 0 t1’, t2/, and t3’ denote the bit of these
positions,

t1’ = 1 => Read/Only file,
t2’ = 1 => SYS file, no DIR list

ex contains the current extent number, normally set
to 00 by the user, but in range 0-31 during file /O

s1 reserved for internal system use

s2 reserved for internal system use, set to zero on call
to OPEN, MAKE, SEARCH

rc record count for extent “ex,” takes on values from
0-127

do...dn filled-in by CP/M, reserved for system use

cr current record to read or write in a sequential file

operation, normally set to zero by user

r0,r1,r2 optional random record number in the range 0-
65535, with overflow to r2, r0, r1 constitute a 16-
bit value with low byte r0, and high byte r1

Each file being accessed through CP/M must have a corresponding FCB, which
provides the name and allocation information for all subsequent file operations. When
accessing files, it is the programmer’s responsibility to fill the lower 16 bytes of the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while ail other fields are zero.

FCBs are stored in a directory area of the disk; and are brought into central memory
before the programmer proceeds with file operations (see the OPEN and MAKE func-
tions). The memory copy of the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file operation (see the CLOSE
command).

The CCP constructs the first 16 bytes of two optional FCBs for a transient by
scanning the remainder of the line following the transient name, denoted by filel and
file2 in the prototype command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH and can be used as is for
subsequent file operations. The second FCB occupies the d0 ... dn portion of the first FCB
and must be moved to another area of memory before use. If, for example, the operator

types
PROGNAME B:X.ZOT Y.ZAP

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

the file PROGNAME.COM isloaded into the TPA and the default FCB at BOOT+005CH
is initialized to drive code 2, file name X, and file type ZOT. The second drive code takes
the default value 0, which is placed at BOOT+006CH, with the file name Y placed into
location BOOT+006DH and file type ZAP located 8 bytes later at BOOT+0075H. All
remaining fields through cr are set to zero. The user should note again that it is the
programmer’s responsibility to move this second file name and type to another area,
usually a separate file control block, before opening the file that begins at BOOT+005CH,
because the open operation will overwrite the second name and type.

If no file names are specified in the original command, the fields beginning at
BOOT+005DH and BOOT+006DH contain blanks. In all cases, the CCP translates lower
case alphabetics to upper case to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT+0080H is initial-
ized to the command line tail typed by the operator following the program name. The first
position contains the number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at BOOT+0080H is
initialized as follows:

BOOT+0080H:

+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +A +B +C +D +E
E "t IBI I:l IXI I'I IZI IO! ITI " IYI l.' IZI IAI IPI

where the characters are translated to upper case ASCII with uninitialized memory
following the last valid character. Again, it is the responsibility of the programmer to
extract the information from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

Individual functions are described in detail in the pages that follow.

Function 0: System Reset

Entry Parameters:
Register C: 00H

The system reset function returns control to the CP/M operating system at the CCP
level. The CCP reinitializes the disk subsystem by selecting and logging in disk drive A.
This function has exactly the same effect as a jump to location BOOT.

Function 1: Console Input

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCII Character

The console input function reads the next console character to register A. Graphic
characters, along with carriage return, line feed, and back space (ctl-H) are echoed to the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

console. Tab characters (ctl-I) move the cursor to the next tab stop. A check is made for
start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). The FDOS does not return to

the calling program until a character has been typed, thus suspending execution if a
character is not ready.

Function 2: Console Output

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. As in function 1,
tabs are expanded and checks are made for start/stop scroll and printer echo.

Function 3: Reader Input

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into

register A (see the IOBYTE definition in Chapter 6). Control does not return until the
character has been read.

Function 4: Punch Output

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the logical punch
device.

Function 5: List Output

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the logical listing
device.

926 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 6: Direct Console 1/O

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or
char (output)

Returned Value:
Register A: char or status

Direct console 1/O is supported under CP/M for those specialized applications where
basic console input and output are required. Use of this function should, in general, be
avoided since it bypasses all of CP/M’s normal control character functions (e.g., control-S
and control-P). Programs that perform direct I/O through the BIOS under previous
releases of CP/M, however, should be changed to use direct I/O under BDOS so that they
can be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a
console input request, or an ASCII character. If the input value is FF, function 6 returns
A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a valid ASCII
character that is sent to the console.

Function 6 must not be used in conjunction with other console I/O functions.

Function 7: Get I/O Byte

Entry Parameters:
Register C: 07H

Returned Value:
Register A: /O Byte Value

The Get 1/O Byte function returns the current value of IOBYTE in register A. See
Chapter 6 for IOBYTE definition.

Function 8: Set I/O Byte

Entry Parameters:
Register C: 08H
Register E: 1/O Byte Value

The Set 1/O Byte function changes the IOBYTE value to that givenin register E.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

Function 9: Print String

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory at the location
given by DE to the console device, until a $ is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll and printer echo.

Function 10: Read Console Buffer

Entry Parameters:
Register C: 0AH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed
by registers DE. Console input is terminated when either input buffer overflows or a
carriage return or line feed is typed. The Read Buffer takes the form:

DE:+0 +1 +2 +3 +4 +5 +6 +7 +8 . . .+n
mx|nc |c1 |c2 |c3 |c4 |c5 [c6 |c7 |...]?7

where mx is the maximum number of characters that the buffer will hold (1 to 255) and nc
is the number of characters read (set by FDOS upon return), followed by the characters
read from the console. If nc < mx, then uninitialized positions follow the last character,
denoted by ?? in the above figure. A number of control functions are recognized during

line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

cti-H backspaces one character position
ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes current line

ctl-X same as ctl-U.

The user should also note that certain functions that return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the prompt ended (in earlier

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

releases, the carriage returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

Function 11: Get Console Status

Entry Parameters:
Register C: O0BH

Returned Value:
Register A: Console Status

The Console Status function checks to see if a character has been typed at the console.
If a character is ready, the value OFFH is returned in register A. Otherwise a00H value is
returned.

Function 12: Return Version Number

Entry Parameters:
Register C: O0CH

Returned Value:
Registers HL: Version Number

Function 12 provides information that allows version independent programming. A
two-byte value is returned, with H = 00 designating the CP/M release (H = 01 for MP/M),
and L = 00 for all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in register L,
with subsequent version 2 releases in the hexadecimal range 21, 22, through 2F. Using
function 12, for example, the user can write application programs that provide both
sequential and random access functions.

Function 13: Reset Disk System

Entry Parameters:
Register C: 0DH

The Reset Disk Function is used to programmatically restore the file system to a reset
state where all disks are set to read/write (see functions 28 and 29), only disk drive A is
selected, and the default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program that requires a disk change without a
system reboot.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

Function 14: Select Disk

Entry Parameters:
Register C: 0EH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default
disk for subsequent file operations, with E =0 for drive A, 1 for drive B, and so on through
15, corresponding to drive P in a full 16 drive system. The drive is placed in an on-line
status, which activates its directory until the next cold start, warm start, or disk system
reset operation. If the disk medium is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see function 28). FCBs that
specify drive code zero (dr = 00H) automatically reference the currently selected default
drive. Drive code values between 1 and 16, however, ignore the selected default drive and
directly reference drives A through P.

Function 15: Open File

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Open File operation is used to activate a file that currently exists in the disk
directory for the currently active user number. The FDOS scans the referenced disk
directory for a match in positions 1 through 14 of the FCB referenced by DE (byte s1 is
automatically zeroed), where an ASCII question mark (3FH) matches any directory
character in any of these positions. Normally, no question marks are included, and bytes
ex and s2 of the FCB are zero.

If a directory element is matched, the relevant directory information is copied into
bytes dO through dn of the FCB, thus allowing access to the files through subsequent read
and write operations. The user should note that an existing file must not be accessed until
a successful open operation is completed. Upon return, the open function returns a
directory code with the value 0 through 3 if the open was successful or OFFH (255
decimal) if the file cannot be found. If question marks occur in the FCB, the first matching
FCB is activated. Note that the current record (cr) must be zeroed by the program if the
file is to be accessed sequentially from the first record.

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 16: Close File

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the open file function. Given that the
FCB addressed by DE has been previously activated through an open or make function
(see functions 15 and 22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close is identical to the open
function. The directory code returned for a successful close operationis 0,1, 2, or 3, while
a OFFH (255 decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write operations have
occurred, however, the close operation is necessary to record the new directory informa-
tion permanently.

Function 17: Search for First

Entry Parameters
Register C: 11H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed
by DE. The value 255 (hexadecimal FF) is returned if the file is not found; otherwise, 0, 1,
2, or 3 is returned indicating the file is present. When the file is found, the current DMA
address is filled with the record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information can be extracted
from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from f1 through
ex matches the corresponding field of any directory entry on the default or auto-selected
disk drive. If the dr field contains an ASCII question mark, the auto disk select function is
disabled and the default disk is searched, with the search function returning any matched
entry, allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but it allows complete flexibility to scan all
current directory values. If the dr field is not a question mark, the s2 byte is automatically
zeroed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101

Function 18: Search for Next

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First function, except that the
directory scan continues from the last matched entry. Similar to function 17, function 18
returns the decimal value 255 in A when no more directory items match.

Function 19: Delete File

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Delete File function removes files that match the FCB addressed by DE. The
filename and type may contain ambiguous references (i.e., question marks in various
positions), but the drive select code cannot be ambiguous, as in the Search and Search

Next functions.
Function 19 returns a decimal 255 if the referenced file or files cannot be found;

otherwise, a value in the range 0 to 3 is returned.

Function 20: Read Sequential

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Read Sequential function reads the next 128-byte
record from the file into memory at the current DMA address. The record is read from
position cr of the extent, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next read operation. The value 00H is
returned in the A register if the read operation was successful, while a nonzero value is
returned if no data exist at the next record position (e.g., end-of-file occurs).

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 21: Write Sequential

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register ~A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Write Sequential function writes the 128-byte data
record at the current DMA address to the file named by the FCB. The record is placed at
position cr of the file, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next write operation. Write operations can
take place into an existing file, in which case, newly written records overlay those that
already exist in the file. Register A = 00H upon return from a successful write operation,
while a nonzero value indicates an unsuccessful write caused by a full disk.

Function 22: Make File

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register ~A: Directory Code

The Make File operation is similar to the open file operation except that the FCB must
name a file that does not exist in the currently referenced disk directory (i.e., the one
named explicitly by a nonzero dr code or the default disk if dr is zero). The FDOS creates
the file and initializes both the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a preceding delete
operation is sufficient if there is any possibility of duplication. Upon return, register A =0,
1, 2, or 3if the operation was successful and OFFH (255 decimal) if no more directory space
is available. The make function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

Function 23: Rename File

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value:
Register ~A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the
file named in the first 16 bytes to the file named in the second 16 bytes. The drive codedr

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

at position 0 is used to select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A is set to a value
between 0 and 3 if the rename was successful and OFFH (255 decimal) if the first file name
could not be found in the directory scan.

Function 24: Return Log-in Vector

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/M is a 16-bit value in HL, where the least
significant bit of L corresponds to the first drive A and the high order bit of H corresponds
to the sixteenth drive, labeled P. A 0 bit indicates that the drive is not on-line, while a 1 bit
marks a drive that is actively on-line as a result of an explicit disk drive selection or an
implicit drive select caused by a file operation that specified a nonzero dr field. The user
should note that compatibility is maintained with earlier releases, since registers AandL
contain the same values upon return.

Function 25: Return Current Disk

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk numberin register A. The disk
numbers range from 0 through 15 corresponding to drives A through P.

Function 26: Set DMA Address

Entry Parameters:
Register C: 1AH
Registers DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connection
with disk controllers that directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data are transferred through programmed I/O operations), the
DMA address has, in CP/M, come to mean the address at which the 128-byte datarecord
resides before a disk write and after a disk read. Upon cold start, warm start, or disk

104 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

system reset, the DMA address is automatically set to BOOT+0080H. The Set DMA
function, however, can be used to change this default value to address another area of
memory where the data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

Function 27: Get ADDR(Alloc)

Entry Parameters:
Register C: 1BH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program). Function 27
returns the base address of the allocation vector for the currently selected disk drive.
However, the allocation information may be invalid if the selected disk has been marked
read/only. Although this function is not normally used by application programs, addi-
tional details of the allocation vector are found in Chapter 6.

Function 28: Write Protect Disk

Entry Parameters:
Register C: 1CH

The disk write protect function provides temporary write protection for the currently
selected disk. Any attempt to write to the disk before the next cold or warm start
operation produces the message:

BDOS ERR on d: R/O

Function 29: Get Read/Only Vector

Entry Parameters:
Register C: 1DH

Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL, which indicates drives that have
the temporary read-only bit set. As in function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P. The R/O bit is set either by
an explicit call to function 28 or by the automatic software mechanisms within CP/M that
detect changed disks.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 105

Function 30: Set File Attributes

Entry Parameters:
Register C: 1EH
Registers DE: FCB Address

Returned Value:
Register ~A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. In particular, the R/O and System attributes (t1” and t2’) can
be set or reset. The DE pair addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match and changes the matched
directory entry to contain the selected indicators. Indicators f1’ through f4’ are not
currently used, but may be useful for applications programs, since they are not involved
in the matching process during file open and close operations. Indicators f5" through 8’
and t3’ are reserved for future system expansion.

Function 31: Get ADDR(Disk Parms)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as a result of
this function call. This address can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk parameters when
the disk environment changes, if required. Normally, application programs will not
require this facility.

Function 32: Set/Get User Code

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user number
by calling function 32. If register E = OFFH, the value of the current user number is

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

returned in register A, where the value is in the range of 0 to 15. If register E is not OFFH,
the current user number is changed to the value of E (modulo 16).

Function 33: Read Random

Entry Parameters:
Register C: 21H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected
by the 24-bit value constructed from the 3-byte field following the FCB (byte positions r0
at 33, rl1 at 34, and r2 at 35). The user should note that the sequence of 24 bits is stored
with least significant byte first (r0), middle byte next (r1), and high byte last (r2). CP/M
does not reference byte r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a nonzero value indicates overflow past the end of file.

Thus, the r0, r1 byte pair is treated as a double-byte, or “word” value, which contains
the record to read. This value ranges from 0 to 65535, providing access to any particular
record of the 8-megabyte file. To process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may not contain any
allocated data, this ensures that the file is properly recorded in the directory and is visible
in DIR requests. The selected record number is then stored in the random record field (r0,
r1), and the BDOS is called to read the record. Upon return from the call, register A either
contains an error code, as listed below, or the value 00, indicating the operation was
successful. In the latter case, the current DMA address contains the randomly accessed
record. The user should note that contrary to the sequential read operation, the record
number is not advanced. Thus, subsequent random read operations continue to read the
same record.

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the
current randomly accessed position. However, the user should note that, in this case, the
last randomly read record will be reread as one switches from random mode to sequential
read and the last record will be rewritten as one switches to a sequential write operation.
The user can, of course, simply advance the random record position following each
random read or write to obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 (not returned in random mode)
03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that
has not been previously written or an extent that has not been created, which are
equivalent conditions. Error code 03 does not normally occur under proper system

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

operation. If it does, it can be cleared by simply rereading or reopening extent zero as long
as the disk is not physically write protected. Error code 06 occurs whenever byte r2 is
nonzero under the current 2.0 release. Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete.

Function 34: Write Random

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation is initiated similarly to the Read Random call, except
that data are written to the disk from the current DMA address. Further, if the disk
extent or data block that is the target of the write has not yet been allocated, the allocation
is performed before the write operation continues. As in the Read Random operation, the
random record number is not changed as a result of the write. The logical extent number
and current record positions of the file control block are set to correspond to the random
record that is being written. Again, sequential read or write operations can begin follow-
ing a random write, with the notation that the currently addressed record is either read or
rewritten again as the sequential operation begins. The user can also simply advance the
random record position following each write to get the effect of a sequential write
operation. The user should note that, in particular, reading or writing the last record of an
extent in random mode does not cause an automatic extent switch as it does in sequential
mode.

The error codes returned by a random write are identical to the random read opera-
tion with the addition of error code 05, which indicates that a new extent cannot be
created as a result of directory overflow.

Function 35: Compute File Size

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random
mode format (bytes r0, r1, and r2 are present). The FCB contains an unambiguous file
name that is used in the directory scan. Upon return, the random record bytes contain the
“virtual” file size, which is, in effect, the record address of the record following the end of
the file. Following a call to function 35, if the high record byte r2 is 01, the file contains the
maximum record count 65536. Otherwise, bytes r0 and r1 constitute a 16-bit value (r0 is
the least significant byte, as before), which is the file size.

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Data can be appended to the end of an existing file by simply calling function 35 to set
the random record position to the end of file and then performing a sequence of random
writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If the file was created in random mode and “holes” exist in the allocation, the
file may in fact contain fewer records than the size indicates. For example, if only the last
record of an 8-megabyte file is written in random mode (i.e., record number 65535), the
virtual size is 65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the
random record position from a file that has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the
positions of various “key” fields. As each key is encountered, function 36 is called to
compute the random record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a table with the key for
later retrieval. After scanning the entire file and tabulating the keys and their record
numbers, the user can move instantly to a particular keyed record by performing a
random read, using the corresponding random record number that was saved earlier. The
scheme is easily generalized for variable record lengths, since the program need only
store the buffer-relative byte position along with the key and record number to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequential read or write
over to random read or write. A file is sequentially accessed to a particular point in the file,
function 36 is called, which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

Function 37: Reset Drive

Entry Parameters:
Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: O00H

The Reset Drive function allows resetting of specified drives. The passed parameter is
a 16 bit vector of drives to be reset; the least significant bit is drive A:.
To maintain compatibility with MP/M, CP/M returns a zero value.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

Function 40: Write Random With Zero Fill

Entry Parameters:
Register C: 28H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random With Zero Fill operation is similar to Function 34, with the
exception that a previously unallocated block is filled with zeros before the data are
written.

5.3 A Sample File-to-File Copy Program

The program shown below provides a relatively simple example of file operations. The
program source file is created as COPY.ASM using the CP/M ED program and then
assembled using ASM or MAC, resulting in a HEX file. The LOAD program is used to
produce a COPY.COM file, which executes directly under the CCP. The program begins
by setting the stack pointer to alocal area and proceeds to move the second name from the
default area at 006CH to a 33-byte file control block called DFCB. The DFCB is then
prepared for file operations by clearing the current record field. At this point, the source
and destination FCBs are ready for processing, since the SFCB at 005CH is properly set
up by the CCP upon entry to the COPY program. That s, the first name is placed into the
default FCB, with the proper fields zeroed, including the current record field at 007CH.
The program continues by opening the source file, deleting any existing destination file,
and creating the destination file. If all this is successful, the program loops at the label
COPY until each record has been read from the source file and placed into the destination
file. Upon completion of the data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

; sample file-to-file copy program
; at the ccp level, the command
; copy a:x.y b:u.v

; copies the file named x.y from drive
; a to a file named u.v. on drive b.

0000 = boot equ 0000h ; system reboot
0005 = bdos equ 0005h ; bdos entry point
005c = fcbl equ 005ch ; first file name
005¢c = sfcb equ fcbl ; source fcb

006¢ = fcb2 equ 006ch ; second file name
0080 = dbuff equ 0080h ; default buffer
0100 = tpa equ 0100h ; beginning of tpa
0009 = printf equ 9 ; print buffer func#
000f = openf equ 15 ; open file func#
0010 = closef equ 16 ; close file func#

110 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0013 =
0014 =
0015 =
0016 =

0100
0100 311b02

0103 0el10
0105 116c00
0108 21da01
010b 1a
010c 13
010d 77
010e 23
010f 0d
0110 c20b01

0113 af
0114 32fa01

0117 115c00
011a cd6901
011d 118701
0120 3c

0121 cc6101

0124 11da01
0127 cd7301

012a 11da01
012d cd8201
0130 119601
0133 3c

0134 cc6101

0137 115c00
013a ¢d7801
013d b7

013e ¢c25101

0141 11da01
0144 cd7d01
0147 11a901
014a b7

014b c46101

deletef
readf
writef
makef

’

mfcb:

equ 19 ; delete file func#
equ 20 ; sequential read
equ 21 ; sequential write
equ 22 ; make file func#

org tpa ; beginning of tpa
Ixi sp,stack ; local stack

move second file name to dfcb

mvi c,16 ; half an fcb

Ixi d,fcb2 ; source of move
Ixi h,dfcb ; destination fcb
Idax d ; source fcb

inx d ; ready next
mov m,a ; dest fcb

inx h ; ready next

der ¢ ; count 16...0

jnz mfcb ; loop 16 times

name has been removed, zero cr
Xra a ;a=00h
sta dfcbcer ;currentrec =0

source and destination fcb’s ready

Ixi d,sfcb ; source file

call open ; error if 255

Ixi d,nofile ; ready message
inr a ; 255 becomes 0
cz finis ; done if no file

source file open, prep destination

Ixi d,dfcb ; destination

call delete ; remove if present
Ixi d,dfcb ; destination

call make ; create the file

IXi d,nodir ; ready message

inr a ; 255 becomes 0

cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

Ixi d,sfcb ; source

call read ; read next record
ora a ; end of file?

jnz eofile ; skip write if so

not end of file, write the record

Ixi d,dfcb ; destination
call write ; write record
Ixi d,space ;ready message
ora a ; 00 if write ok
cnz finis ;end if so

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

111

014e c33701

0151 11da01
0154 cd6e01
0157 21bb01
015a 3¢

015b cc6101

015e 11cc01

0161 0e09
0163 cd0500
0166 ¢30000

0169 0e0f
016b ¢30500

016e 0el0
0170 c30500

0173 0e13
0175 c30500

0178 Oe14
017a c30500

017d Oel15
017f c30500

0182 Oel16
0184 c30500

0187 6e6f20f
0196 6e6f209
01a9 6f7574f
01bb 7772695
01cc 636700

O01da
O1fa =
01fb

021b

‘eofile:

1
’
’

open:

’

close:
delete

read:

write:

’

make:

nofile:
nodir:
space:
wrprot:

normal:

)

dfcb:
dfcbcer

)

stack:

jmp copy ; loop until eof

; end of file, close destination

Ixi d,dfcb ; destination

call close ; 255 if error

Ixi h,wrprot ; ready message
inr a ; 255 becomes 00
cz finis ; shouldn’t happen

copy operation complete, end
Ixi d,normal ; ready message

; write message given by de, reboot
mvi c,printf
call bdos
jmp boot

; write message
; reboot system

system interface subroutines
(all return directly from bdos)

mvi c,openf
jmp bdos

mvi c,closef
jmp bdos

mvi c,deletef
jmp bdos

mvi c,readf
jmp bdos

mvi c,writef
jmp bdos

mvi c,makef
jmp bdos

console messages

db ‘no source file$’

db ‘no directory space$’
db ‘out of data space$’
db ‘write protected?$’
db ‘copy complete$’

data areas
ds 33 ; destination fcb
equ dfcb+32 ; current record

ds 32 ; 16 level stack

end

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The user should note that there are several simplifications in this particular program.
First, there are no checks for invalid file names that could, for example, contain ambigu-
ous references. This situation could be detected by scanning the 32-byte default area
starting at location 005CH for ASCII question marks. A check should also be made to
ensure that the file names have, in fact, been included (check locations 005DH and 006 DH
for nonblank ASCII characters). Finally, a check should be made to ensure that the soyrce
and destination file names are different. An improvement in speed could be obtained by
buffering more data on each read operation. One could, for example, determine the size
of memory by fetching FBASE from location 0006H and using the entire remaining
portion of memory for a data buffer. In this case, the programmer simply resets the DMA
address to the next successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning of the buffer and incremented
by 128 bytes to the end as each record is transferred to the destination file.

5.4 A Sample File Dump Utility

The file dump program shown below is slightly more complex than the simple copy
program given in the previous section. The dump program reads an input file, specified in
the CCP command line, and displays the content of each record in hexadecimal format at
the console. Note that the dump program saves the CCP’s stack upon entry, resets the
stack to a local area, and restores the CCP’s stack before returning directly to the CCP.
Thus, the dump program does not perform and warm start at the end of processing.

; DUMP program reads input file and displays hex

data
0100 org 100h
0005 = bdos equ 0005h = ;bdos entry point
0001 = cons equ 1 ;read console
0002 = typef equ 2 ;type function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key function
;(true if char
000f = openf equ 15 ;file open
0014 = readf equ 20 ;read function
005¢c = fcb equ 5ch ;file control block
;address
0080 = buff equ 80h ;input disk buffer
) ;address
; non graphic characters
000d = cr equ 0dh ;carriage return
000a = !f equ Oah ;line feed
; file control block definitions
005c = fcbdn equ fcb+0 ;disk name
005d = fcbfn equ fcb+1 ;file name
0065 = fcbft equ fcb+9 ;disk file type (3
;characters)
0068 = fcbrl equ fcb+12 ;file’s current reel
ynumber
006b = fcbrc equ fcb+15 ;file’srecordcount (0to
;128)128)
007c = fcber’ equ fcb+32 ;current (next) record
;number (0

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 113

007d =

0100 210000

0103 39

0104 221502

0107 315702

010a cdc101
010d feff
010f c21b01

0112 11301
0115 cd9c01
0118 ¢35101

011b 3e80
011d 321302

0120 210000
0123 e5
0124 cda201
0127 el
0138 da5101
012b 47
012¢ 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 of
0139 da5101

013c 7c
013d cdsfo1
0140 7d
0141 cd8f01

0144 23

openok:

gloop:

nonum:

equ fcb+33 ;fcb length

set up stack

Ixi h,0

dad sp

entry stack pointer in hl from the ccp
shid oldsp

set sp to local stack area (restored at
finis)

Ixi sp,stktop

read and print successive buffers
call setup ;set up input file

cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and
return

Ixi d,opnmsg

call err

jmp finis ;to return

;open operation ok, set buffer index to
;end

mvi a,80h

sta ibp ;set buffer pointer to 80h

hl contains next address to print

Ixi h,0 ;start with 0000

pushh ;save line position

call gnb

pop h ;recall line position

jc finis ;carry set by gnb if end
;file

mov b,a

print hex values

check for line fold

mov a,l

ani Ofh :check low 4 bits
jnz nonum

print line number

call crif

check for break key

call break

accum Isb = 1 if character ready

rrc ;into carry

jc finis ;don’t print any more

mov a,h
call phex
mov a,l
call phex

inx h :to next line number

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0145 3e20
0147 ¢cd6501
014a 78
014b cd8fo1
014e ¢32301

0151 cd7201
0154 2a1502
0157 19

0158 c9

0159 e5d5c5

015¢ 0eOb
015e ¢d0500
0161 c1diel

0164 c9

0165 e5d5¢5
0168 0e02
016a 5f
016b cd0500
016e c1dlet
0171 c9

0172 3e0d
0174 cd6501
0177 3e0a
0179 cd6501
017c c9

017d e60f
017f fe0a
0181 d28901

0184 c630
0186 c38b01

0189 c637

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

pchar:

crif:

pnib:

p10:

mvi a,’’
call pchar
mov a,b
call phex
jmp gloop

end of dump, return to cco

(note that a jmp to 0000h reboots)
call crif

Ihid oldsp

sphl

stack pointer contains ccp’s stack
location

ret ;to the ccp

subroutines

;check break key (actually any key will
;do)

push h! push d! push b; environment
; saved

mvi c,brkf

call bdos

pop b! pop d! pop h; environment
restored

ret

;print a character

push h! push d! push b; saved
mvi c,typef

mov e,a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,cr
call pchar
mvi a,lf
call pchar
ret

;print nibble in reg a

ani 0Ofh ;low 4 bits
cpi 10

jnc p10

less than or equal to 9
adi ‘O

jmp prn

greater or equal to 10
adi ‘a’-10

115

018b cd6501
018e c9

018f 5

0190 of
0191 of
0192 of
0193 of
0194 cd7d01
0197 f1
0198 cd7do01
019b c9

019c 0e09

019e c¢d0500
O1al c9

01a2 3a1302
01a5 fe80
01a7 c2b301

0O1aa cdceO1
Otlad b7
O1ae cab301
01b1 37
01b2 c9
01b3 5f
01b4 1600
01b6 3c
01b7 321302
O1ba 218000
01bd 19
O1be 7e

01bf b7
01c0 c9

O1c1 af

prn:

phex:

gnb:

go0:

call pchar
ret

;print hex char in reg a
pushpsw

rec

rrc

rrc

rrc

call pnib ;print nibble
pop psw

call pnib

ret

;print error message

d,e addresses message ending with “$”

mvi c,printf ;print buffer
;function

call bdos

ret

;get next byte

Ida ibp

cpi 80h

jnz g0

read another buffer

call diskr

ora a ;zero value if read ok
jz g0 ;for another byte

end of data, return with carry set for eof
stc

ret

;read the byte at buff+reg a

mov e,a ;Is byte of buffer index

mvi d,0 :double precision
;index to de

inr a ;index=index+1

sta ibp ;back to memory

pointer is incremented

save the current file address

IXi h,buff

dad d

absolute character address is in hl
mov a,m

byte is in the accumulator

ora a ;reset carry bit
ret

;set up file

open the file for input

Xra a ;zero to accum

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

01c2 327c00 sta fcber ;clear current record

01c5 115c00 Ixi d,fcb
01c8 0e0f mvi c,openf
01ca cd0500 call bdos
; 255 in accum if open error
01cd c9 ret
diskr: ;read disk file record
O1ce e5d5¢cH push h! push d! push b
01d1 115¢c00 Ixi d,fcb
01d4 Oe14 mvi c,readf
01d6 cd0500 call bdos
01d9 cidiel pop b! pop d! pop h
01dc c9 ret
; fixed message area
01dd 46494c0 signon: db ‘file dump version 2.0$’
0113 0dOa4e0 opnmsg: db crlfno input file present on
disk$’
; variable area
0213 ibp: ds 2 ;input buffer pointer
0215 oldsp: ds 2 ;entry sp value from ccp
; stack area
0217 ds 64 ;reserve 32 level stack
stktop:
0257 end

5.5 A Sample Random Access Program

This chapter concludes with an extensive example of random access operation. The
program listed below performs the simple function of reading or writing random records

upon command from the terminal. Given that the program has been created, assembled,
and placed into a file labeled RANDOM.COM, the CCP level command

RANDOM X.DAT
starts the test program. The program looks for a file by the name X.DAT (in this
particular case) and, if found, proceeds to prompt the console for input. If not found, the
file is created before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The input commands
take the form

nW nR Q
where n is an integer value in the range 0 to 65535, and W, R, and Q are simple command

characters corresponding to random write, random read, and quit processing, respec-
tively. If the W command is issued, the RANDOM program issues the prompt

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117

type data:.

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT file at record n. If the R
command is issued, RANDOM reads record number n and displays the string value at the
console. If the Q command is issued, the X.DAT file is closed, and the program returns to
the CCP. In the interest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the input file is opened or
created, followed by a continuous loop at the label “ready” where the individual com-
mands are interpreted. The default file control block at 005CH and the default buffer at
0080H are used in all disk operations. The utility subroutines then follow, which contain
the principal input line processor, called “readc.” This particular program shows the
elements of random access processing, and can be used as the basis for further program
development.

Sample Random Access Program foer CP/M 2.0

0100 org 100h ;base of tpa

0000 = reboot equ 0000h ;system reboot

0005 = bdos equ 0005h ;bdos entry point

0001 = coninp equ 1 ;console input function

0002 = conout equ 2 ;console output function

0009 = pstring equ 9 ;print string until ‘$’

000a = rstring equ 10 ;read console buffer

000c = version equ 12 ;return version number

000f = openf equ 15 ;file open function

0010 = closef equ 16 ;close function

0016 = makef equ 22 ;make file function

0021 = readr equ 33 ;read random

0022 = writer equ 34 ;write random

005¢c = fcb equ 005ch ;default file control
:block

007d = ranrec equ fcb+33 ;random record position

007f = ranovf equ fcb+35 ;high order (overflow)
\byte

0080 = buff equ 0080h ;buffer address

000d = cr equ 0dh ;carriage return

000a = If equ Oah ;line feed

’

Load SP, Set-Up File for Random Access

0100 31bc00 Ixi sp,stack
; version 2.0
0103 0eOc mvi c,version

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0105 ¢d0500
0108 fe20
010a d21600

010d 111b00
0110 cdda00
0113 ¢30000

0116 0e0f
0118 115¢c00
011b ¢cd0500
011e 3c
011f c23700

0122 0el16
0124 115¢c00
0127 cd0500
012a 3c
012b ¢23700

012e 113a00
0131 cdda00
0134 ¢c30000

0137 cde500
013a 227d00
013d 217100
0140 3600
0142 fe51
0144 ¢c25600

0147 0e10
0149 115c00
014c ¢d0500
014f 3¢
0150 cab900
0153 ¢30000

call bdos

cpi 20h ;version 2.0 or better?
jnc versok
bad version, message and go back
IXi d,badver
call print
jmp reboot
versok:
; correct version for random access
mvi c,openf ;open default fcb
Ixi d.fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

; cannot open file, so create it

mvi c,makef

Ixi d,fcb

call bdos

inr a ;err 255 becomes zero
jnz ready

; cannot create file, directory full

IXi d,nospace
call print
jmp reboot ;back to ccp

Loop Back to Ready After Each Command

ready:
; file is ready for processing

call readcom ;read next command
shid ranrec ;store input record#
Ixi h,ranovf

mvi m,0 ;clear high byte if set
cpi ‘Q’ ;quit?

jnz notq

; quit processing, close file

mvi c,closef

Ixi d,fcb

call bdos

inr a ;err 255 becomes 0
jz error ;error message, retry
jmp reboot ;back to ccp

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 119

0156 feb7
0158 c28900

015b 114d00
015e cdda00
0161 Oe7f

0163 218000

0166 c5
0167 e5
0168 cdc200
016b e1
016¢ ct
016d feOd
016f ca7800

0172 77
0173 23
0174 0od
0175 ¢26600

0178 3600

017a 0e22
017c 115c00
017f cd0500
0182 b7
0183 ¢c2b900
0186 ¢c33700

0189 feb2
018b c2b900

018e Oe21
0190 115¢c00
0193 cd0500
0196 b7
0197 c2b900

120

End of Quit Command, Process Write

notq:

rloop:

not the quit command, random write?
cpi ‘W’
jnz notw

this is a random write, fill buffer until cr

Ixi d,datmsg

call print ;data prompt

mvi c,127 ;up to 127 characters
IXi h,buff ;destination

;read next character to buff

push b ;save counter

push h ;next destination
call getchr ;character to a

pop h ;restore counter
pop b ;restore next to fill
cpi cr ;end of line?

jz erloop

not end, store character

mov m,a

inx h ;next to fill

der c ;counter goes down
jnz rloop ;end of buffer?

end of read loop, store 00
mvi m,0

write the record to selected record number
mvi c,writer

Ixi d,fcb

call bdos

ora a ;error code zero?
jnz error ;message if not
jmp ready ;for another record

End of Write Command, Process Read

notw:

not a write command, read record?
cpi ‘R’
jnz error ;skip if not

read random record

mvi c,readr

Ixi d,fcb

call bdos

ora a ;return code 007?
jnz error

read was successful, write to console

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

019a cdcf00
019d 0e80
019f 218000

01a2 7e
01a3 23
01a4 e67f
01a6 ca3700

01a9 ¢5
Ot1aa e5
O1ab fe20
O1ad d4c800
01b0 et
01b1 c1
01b2 0d
01b3 c2a200
01b6 ¢33700

01b9 115900
01bc cdda00
01bf c33700

01c2 0e01
01c4 cd0500
01c7 c9

01c8 0e02
O1ca 5f
01cb ¢d0500
O1ce c9

01cf 3e0d
01d1 cdc800
01d4 3ela
01d6 cdc800
01d9 c9

call crif ;new line

mvi c,128 ;max 128 characters
IXi h,buff ;next to get
wloop:
mov a,m ;next character
inx h ;next to get
ani 7fh ;mask parity
jz ready ;for another command
1if 00
push b ;save counter
push h ;save next to get
cpi ‘o ;graphic?
cnc putchr ;skip output if not
pop h
pop b
dcr c ;count=count-1
jnz wloop
jmp ready

End of Read Command, All Errors End Up Here

error:
Ixi d,errmsg
call print
jmp ready

Utility Subroutines for Console 1/O

getchr:
;read next console character to a
mvi c,coninp
call bdos
ret

putchr:
;write character from a to console
mvi c,conout
mov ea :character to send
call bdos ;send character
ret

crif:

;send carriage return line feed

mvi a,cr ;carriage return
call putchr

mvi a,lf ;line feed

call putchr

ret

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

121

C1da d5
01db cdcf00
01de d1
01df 0e09
01e1 cd050C
01e4 c9

01e5 116b00
01e8 cdda00
O1eb Oela

O1ed 117a00
01f0 c¢d0500

01f3 210000
01f6 117c00
01f9 1a

01fa 13
01fb b7
O1fc c8

01fd d630
01ff feDa
0201 d21300

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
020a 85
020b 6f
020c d2f900
020f 24
0210 c3f900

0213 c630
0215 fe61
0217 d8

0218 e65f
021a c9

print:

’

readcom:

readc:

endrd:

;print the buffer addressed by de until $

push d

call crif

pop d

mvi c,pstring
call bdos

ret

;new line

;print the string

;read the next command line to the conbuf

;command?

;read command line

command line is present, scan it

IXi d,prompt
call print

mvi c,rstring
IXi d,conbuf
call bdos

IXi h,0

Ixi d,conlin
ldax d

inx d

ora a

rz
not zero, numeric?

sui ‘0’
cpi 10
jnc endrd
add-in next digit
dad h
mov c,l
mov b,h
dad h
dad h
dad b
add |

mov l,a
jnc readc
inr h
jmp readc

;start with 0000
;command line
;next command
;character

;to next command
;position

;cannot be end of
:command

;carry if numeric

2

;bc = value * 2
4

;8

2 +*8="10
;+digit

;for another char
;overflow
:for another char

end of read, restore value in a

adi ‘0’ ;command

cpi ‘a’ ;translate case?
rc

lower case, mask lower case bits
ani 101$1111b

ret

122 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

String Data Area for Console Messages

badver:
021b 536179 db ‘sorry, you need cp/m version 2§’
nospace:
023a 4e6129 db ‘no directory space$’
datmsg:
024d 547970 db ‘type data: $’
errmsg:
0259 457272 db ‘error, try again.$’
prompt:
026b 4e6570 db ‘next command? §’

Fixed and Variable Data Area

027a 21 conbuf: db conlen ;length of console buffer
027b consiz: ds 1 ;resulting size after read .
027¢c conlin: ds 32 ;length 32 buffer
0021 = conlen equ $-consiz
029c¢ ds 32 ;16 level stack

stack:
02bc end

Again, major improvements could be made to this particular program to enhance its
operation. In fact, with some work, this program could evolve into a simple data base
management system. One could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called GETKEY, could be
developed that first reads a sequential file and extracts a specific field defined by the
operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the “LAST-
NAME” field from each record, starting in position 10 and ending at character 20.
GETKEY builds a table in memory consisting of each particular LASTNAME field, along
with its 16-bit record number location within the file. The GETKEY program then sorts
this list and writes a new file, called LASTNAME KEY, which is an alphabetical list of
LASTNAME fields with their corresponding record numbers. (This list is called an inverted
index in information retrieval parlance.)

If the programmer were to rename the program shown above as QUERY and massage
it so that it reads a sorted key file into memory, the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY.

Instead of reading a number, the QUERY program reads an alphanumeric string that isa
particular key to find in the NAMES.DAT data base. Since the LASTNAME KEY list is
sorted, one can find a particular entry rapidly by performing a “binary search,” similar to
looking up a name in the telephone book. That is, starting at both ends of the list, one
examines the entry halfway in between and, if not matched, splits either the upper half or

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 123

the lower half for the next search. The user will quickly reach the item he or she is looking
for and find the corresponding record number. The user should fetch and display this
record at the console, just as was done in the program shown above.

With some more work, the user can allow a fixed grouping size that differs from the
128-byte record shown above. This is accomplished by keeping track of the record
number as well as the byte offset within the record. Knowing the group size, one
randomly accesses the record containing the proper group, offset to the beginning of the
group within the record read sequentially until the group size has been exhausted.

Finally, one can improve QUERY considerably by allowing boolean expressions,
which compute the set of records that satisfy several relationships, such asa LASTNAME
between HARDY and LAUREL and an AGE lower than 45. Display all the records that fit
this description. Finally, if the user’s lists are getting toc big to fit into memory, he or she
should randomly access key files from the disk as well.

5.6 System Function Summary

FUNCTION FUNCTION INPUT OUTPUT
NUMBER NAME
Decimal Hex
0 0 System Reset C = 00H none
1 1 Console Input C =01H A = ASCII char
2 2 Console Output E = char none
3 3 Reader Input A = ASCII char
4 4 Punch Output E = char none
5 5 List Output E = char none
6 6 Direct Console /O C = 06H A = char or status
E = OFFH (input) or (no value)
OFEH (status) or
char (output)
7 7 Get I/O Byte none A =1/0 Byte
Value
8 8 Set /0 Byte E = 1/0 Byte none
9 9 Print String DE = Buffer Address none
10 A Read Console Buffer DE = Buffer Console
Characters
in Buffer
11 B Get Console Status none A = 00/non zero
12 C Return Version Number none HL: Version
Number
13 D Reset Disk System none none
14 E Select Disk E =Disk Number none
15 F Open File DE = FCB Address FF if not found
16 10 Close File DE = FCB Address FF if not found
124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

17

18

19
20
21
22

23

24

25

26
27

28
29

30
31

32

33
34
35
36
37
38
39
40

*Note that A = L, and B = H upon return.

11
12

13
14
15
16

17

18

19

1A
1B

1C
1D

1E
1F

20

21
22
23
24
25
26
27
28

Séarch For First
Search For Next

Delete File
Read Sequential
Write Sequential
Make File

Rename File
Return Login Vector
Return Current Disk

Set DMA Address
Get ADDR (ALLOC)

Write Protect Disk
Get Read/only Vector

Set File Attributes
Get ADDR (Disk Parms)

Set/Get User Code

Read Random

Write Random
Compute File Size

Set Random Record
Reset Drive

Access Drive

Free Drive

Write Random with Fill

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DE = FCB Address
none

DE = FCB Address
DE = FCB Address
DE = FCB Address

DE = FCB Address
DE = FCB Address
none

none

DE = DMA Address
none

none
none

DE = FCB Address
none

E = OFFH for Get

E = 00 to OFH for Set
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = Drive Vector
not supported

not supported

DE = FCB

A = Directory
Code

A = Directory
Code

A = none

A = Error Code

A = Error Code

A = FF if no DIR
Space

A = FF if not
found

HL = Login
Vector*

A =CurrentDisk
Number

none

HL = ALLOC
Address”

none

HL = R/O
Vector Value®

A=none

HL = DPB
Address

User Number

A = Error Code
A = Error Code
ro, r1, r2

rQ, r1, r2

A=0

A = Error Code

125

CP/M 2 Alteration

6.1 Introduction

The standard CP/M system assumes operation on an Intel MDS-800 microcomputer
development system, but is designed so the user can alter a specific set of subroutines that
define the hardware operating environment.

Although- standard CP/M 2 is configured for single density floppy disks, field-
alteration features allow adaptation to a wide variety of disk subsystems from single drive
minidisks through high-capacity, “hard disk” systems. To simplify the following adapta-
tion process, it is assumed that CP/M 2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an earlier version of
CP/M is available, the customizing process is eased considerably. In this latter case, the
user may wish to review the system generation process and skip to later sections that
discuss system alteration for nonstandard disk systems.

To achieve device independence, CP/M is separated into three distinct modules:

BIOS basic I/O system, which is environment dependent

BDOS basic disk operating system, which is not dependent upon the hard-
ware configuration

CCP the console command processor, which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular hardware. That is,
the user can “patch” the distribution version of CP/M to provide a new BIOS that
provides a customized interface between the remaining CP/M modules and the user’s
own hardware system. This document provides a step-by-step procedure for patching a
new BIOS into CP/M.

All disk-dependent portions of CP/M 2 are placed into a BIOS, a resident “disk parameter
block,” which is either hand coded or produced automatically using the disk definition
macro library provided with CP/M 2. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the data allocation size,
the maximum extent of the logical disk, directory size information, and reserved track
values. The macros use this information to generate the appropriate tables and table
references for use during CP/M 2 operation. Deblocking information is provided, which

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 127

aids in assembly or disassembly of sector sizes that are multiples of the fundamental 128
byte data unit, and the system alteration manual includes general purpose subroutines
that use the deblocking information to take advantage of larger sector sizes. Use of these
subroutines, together with the table-drive data access algorithms, makes CP/M 2 a
universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where each logical
extent contains 16K bytes of data. CP/M 2 is structured, however, so that as much as
128K bytes of data are addressed by a single physical extent (corresponding to a single
directory entry) maintaining compatibility with previous versions while taking advan-
tage of directory space.

If CPIM is being tailored to a computer system for the first time, the new BIOS
requires some simple software development and testing. The standard BIOS is listed in
Appendix A and can be used as a model for the customized package. A skeletal version of
the BIOS given in Appendix B can serve as the basis for a modified BIOS. In addition to
the BIOS, the user must write a simple memory loader, called GETSYS, that brings the
operating system into memory. To patch the new BIOS into CP/M, the user must write
the reverse of GETSYS, called PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk write commands. Sample skeletal GETSYS and PUTSYS programs
are described in Section 6.4 and listed in Appendix C. To make the CP/M system load
automatically, the user must also supply a cold start loader, similar to the one provided
with CP/M (listed in Appendices A and D). A skeletal form of a cold start loader is givenin
Appendix E, which serves as a model for the loader.

6.2 First Level System Regeneration

The procedure to patch the CP/M system is given below. Address references in each
step are shown with “H” denoting the hexadecimal radix, and are given for a 20K CP/M
system. For larger CP/M systems, a “bias” is added to each address that is shown with a
“+b” following it, where b is equal to the memory size—20K. Values for b in various
standard memory sizes are

24K: b = 24K - 20K = 4K = 1000H
32K: b = 32K - 20K = 12K = 3000H
40K: b = 40K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
62K: b = 62K - 20K = 42K = A800H
64K: b = 64K - 20K = 44K = BOOOH

It should be noted that the standard distribution version of CP/M is set for operation
within a 20K memory system. Therefore, the user must first bring up the 20K CP/M
system, then configure it for actual memory size (the user should see Section 6.3).

The user should:

1.ReadSection 6.4 and write a GETSYS program that reads the first two tracks of a
diskette into memory. The program from the diskette must be loaded starting at
location 3380H. GETSYS is coded to start at location 100H (base of the TPA), as
shown in Appendix C.

128 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2. Test the GETSYS program by reading a blank diskette into memory and check to
see that the data have been read properly and that the diskette has not been altered in
any way by the GETSYS program.

3. Run the GETSYS program using an initialized CP/M diskette to see if GETSYS
loads CP/M starting at 3380H (the operating system actually starts 128 bytes later at
3400H).

4. Read Section 6.4 and write the PUTSYS program. This writes memory starting
at 3380H back onto the first two tracks of the diskette. The PUTSYS program should
be located at 200H, as shown in Appendix C.

5. Test the PUTSYS program using a blank, uninitialized diskette by writing a
portion of memory to the first two tracks; clear memory and read it back using
GETSYS. Test PUTSYS completely, since this program will be used to alter CP/M on
disk.

6. Study Sections 6.5, 6.6, and 6.7 along with the distribution version of the BIOS
given in Appendix A and write a simple version that performs a similar function for
the customized environment. Use the program given in Appendix B as a model. Call
this new BIOS by the name CBIOS (customized BIOS). Implement only the primitive
disk operations on a single drive and simple console input/output functions in this
phase.

7. Test CBIOS completely to ensure that it properly performs console character
[/O and disk reads and writes. Be careful to ensure that no disk write operations occur
during read operations and check that the proper track and sectors are addressed on all
reads and writes. Failure to make these checks may cause destruction of the initialized
CP/M system after it is patched.

8. Referring to the table in Section 6.5, note that the BIOS is placed between
locations 4AOOH and 4FFFH. Read the CP/M system using GETSYS and replace the
BIOS segment by the CBIOS developed in step 6 and tested in step 7. This replace-
ment is done in memory.

9. Use PUTSYS to place the patched memory image of CP/M onto the first two
tracks of a blank diskette for testing.

10. Use GETSYS to bring the copied memory image from the test diskette back
into memory at 3380H and check to ensure that it has loaded back properly (clear
memory, if possible, before the load). Upon successful load, branch to the cold start
code at location 4A00H. The cold start routine will initialize page zero, then jump to
the CCP at location 3400H, which will call the BDOS, which will call the CBIOS. The
CBIOS will be asked by the CCP toread sixteen sectors on track 2,and CP/M will type
“A>", the system prompt.

If difficulties are encountered, use whatever debug facilities are available to trace

and breakpoint the CBIOS.

11. Upon completion of step 10, CP/M has prompted the console for a command
input. Test the disk write operation by typing

SAVE 1 X.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 129

(All commands must be followed by a carriage return.) CP/M responds with another
prompt (after several disk accesses)

A>
If it does not, debug the disk write functions and retry.
12. Test the directory command by typing
DIR
CP/M responds with
A: X COM
13. Test the erase command by typing
ERA X.COM

CPIM responds with the A prompt. This is now an operational system that only
requires a bootstrap loader to function completely.

14. Write a bootstrap loader that is similar to GETSYS and place it on track 0,
sector 1 using PUTSYS (again using the test diskette, not the distribution diskette).
See Sections 6.5 and 6.8 for more information on the bootstrap operation.

15. Retest the new test diskette with the bootstrap loader installed by executing
steps 11, 12, and 13. Upon completion of these tests, type a control-C (control and C
keys simultaneously). The system executes a “warm start” that reboots the system,
and types the A prompt.

16. At this point, there is probably a good version of the customized CP/M system
on the test diskette. Use GETSYS to load CP/M from the test diskette. Remove the
test diskette, place the distribution diskette (or a legal copy) into the drive, and use
PUTSYS to replace the distribution version with the customized version. The user

should not make this replacement if unsure of the patch because this step destroys the
system that was obtained from Digital Research.

17. Load the modified CP/M system and test it by typing
DIR

CP/M responds with a list of files that are provided on the initialized diskette. One file
is the memory image for the debugger

DDT.COM
Note that from now on, it is important always to reboot the CP/M system (ctl-C is
sufficient) when the diskette is removed and replaced by another diskette, unless the
new diskette is to be read only.
18. Load and test the debugger by typing
DDT

(See Chapter 4 for operating procedures.)

130 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

19. Before making further CBIOS modifications, practice using the editor (see
Chapter 2), and assembler (see Chapter 3). Recode and test the GETSYS, PUTSYS,
and CBIOS programs using ED, ASM, and DDT. Code and test a COPY program that
does a sector-to-sector copy from one diskette to another to obtain back-up copies of
the original diskette. (Read the CP/M Licensing Agreement specifying legal responsi-
bilities when copying the CP/M system.) Place the copyright notice

Copyright @, 1979
Digital Research

on each copy that is made with the COPY program.

20. Modify the CBIOS to include the extra functions for punches, readers, and
sign-on messages, and add the facilities for additional disk drives, if desired. These
changes can be made with the GETSYS and PUTSYS programs or by referring to the
regeneration process in Section 6.3.

The user should now have a good copy of the customized CP/M system. Although the
CBIOS portion of CP/M belongs to the user, the modified version cannot be legally copied
for anyone else’s use.

It should be noted that the system remains file-compatible with all other CP/M
systems (assuming media compatibility), which allows transfer of nonproprietary soft-
ware between CP/M users.

6.3 Second Level System Generation

Once the system is running, the user will want to configure CP/M for the desired
memory size. Usually a memory image is first produced with the ‘"MOVCPM” program
(system relocator) and then placed into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger and the system generation program.
(The user should refer to Chapter 1.)

The CBIOS and BOOT are modified using ED and assembled using ASM, producing
files called CBIOS.HEX and BOOT. HEX, which contain the code for CBIOS and BOOT
in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired memory
size, the user should type the command

MOVCPM xx *
where xx is the memory size in decimal K bytes (e.g., 32 for 32K). The response will be

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR “SYSGEN"” OR

“SAVE 34 CPMxx.COM"”
An image of CP/M in the TPA is configured for the requested memory size. The memory
image is at location 0900H through 227FH (i.e., the BOOT is at 0900H, the CCP is at
980H, the BDOS starts at 1180H, and the BIOS is at 1F80H). The user should note that
the memory image has the standard MDS-800 BIOS and BOOT oniit. It is now necessary

to save the memory image in a file so that the user can patch the CBIOS and CBOOT into
it:

SAVE 34 CPMxx.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 131

The memory image created by the “MOVCPM” program is offset by a negative bias so
that it loads into the free area of the TPA, and thus does not interfere with the operation
of CP/M in higher memory. This memory image can be subsequently loaded under DDT
and examined or changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM image.
DDT should respond with

NEXT PC
2300 0100
- (The DDT prompt)

The user can then give the display and disassembly commands to examine portions of the
memory image between 900H and 227FH. The user should note, however, that to find
any particular address within the memory image, one must apply the negative bias to the
CP/M address to find the actual address. Track 00, sector 01, is loaded to location 900H
(the user should find the cold start loader at 900H to 97FH); track 00, sector 02, is loaded
into 980H (this is the base of the CCP); and so on through the entire CP/M system load. In
a 20K system, for example, the CCP resides at the CP/M address 2400H, but is placed into
memory at 980H by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400H
Assuming that twos complement arithmetic, n = D580H, which can be checked by
3400H + D580H = 10980H = 0980H (ignoring high-order overflow).
Note that for larger systems, n satisfies
(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b

The value of n for common CP/M systems is given below.

Memory Size Bias b Negative Offset n

20K 0000H D580H - 0000H = D580H
24K 1000H D580H - 1000H = C580H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K 7000H D580H - 7000H = 6580H
56K 9000H D580H - 9000H = 4580H
62K A800H D580H - A800H = 2D80H
64K BOOOH D580H - BOOOH = 2580H

If the user wants to locate the address x within the memory image loaded under DDT in a
20K system, first type

Hx,n Hexadecimal sum and difference

132 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

and DDT will respond with the value of x+n (sum)and x-n (difference). The first number
printed by DDT is the actual memory address in the image where the data or code are
located. The DDT command

H3400,D580
for example, will produce 980H as the sum, which is where the CCP is located in the
memory image under DDT.
The user should type the L command to disassemble portions of the BIOS located at

(4A00H+b)-n, which, when one uses the H command, produces an actual address of
1F80H. The disassembly command would thus be

L1F80

It is now necessary to patch in the CBOOT and CBIOS routines. The BOOT resides at
location 0900H in the memory image. If the actual load addressis“n”, then to calculate the
bias (m), the user types the command

H900,n Subtract load address from target address.

The second number typed by DDT in response to the command is the desired bias (m). For
example, if the BOOT executes at 0080H, the command

H900,80
will produce
0980 0880 Sum and difference in hex.

Therefore, the bias “m” would be 0880H. To read-in the BOOT, the user should give the
command

ICBOOT.HEX Input file CBOOT.HEX.

Then

Rm Read CBOOT with a bias of m (=900H-n).
The user may now examine the CBOOT with

L900

The user is now ready to replace the CBIOS by examining the area at 1F80H where the
original version of the CBIOS resides and then typing

ICBIOS.HEX Ready the hex file for loading.
The user assumes that the CBIOS is being integrated into a 20K CP/M system and thus

originates at location 4A00H. To locate the CBIOS properly in the memory image under
DDT, one must apply the negative bias n for a 20K system when loading the hex file. This

is accomplished by typing

RD580 Read the file with bias D580H.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 133

Upon completion of the read, the user should reexamine the area where the CBIOS has
been loaded (use an “L1F80” command) to ensure that it was loaded properly. When
satisfied that the change has been made, the user should return from DDT using a
control-C or, “G0” command.

SYSGEN is used to replace the patched memory image back onto a diskette (the user
should utilize a test diskette until sure of the patch), as shown in the following interaction:

SYSGEN Start the SYSGEN program

SYSGEN VERSION 2.0 Sign-on message from SYSGEN

SOURCE DRIVE NAME Respond with a carriage return to skip the
(OR RETURN TO SKIP) CP/M .read operation since the system is

already in memory

DESTINATION DRIVE NAME Respond with “B” to write the new system to
(OR RETURN TO REBOOT) the diskette in drive B

DESTINATION ON B, Place a scratch diskette in drive B, then type
THEN TYPE RETURN return.

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

The user should place the scratch diskette in drive A and then perform a cold start to
bring up the newly configured CP/M system.

The new CP/M system is then tested and the Digital Research copyright notice is
placed on the diskette, as specified in the Licensing Agreement:

Copyright ®, 1979
Digital Research

6.4 Sample GETSYS and PUTSYS Programs

The following program provides a framework for the GETSYS and PUTSYS pro-
grams referenced in Sections 6.1 and 6.2. The READSEC and WRITESEC subroutines
must be inserted by the user to read and write the specific sectors.

; - GETSYS PROGRAM — READ TRACKS 0 AND 1 TO MEMORY AT 3380H

; REGISTER USE

; A (SCRATCH REGISTER)

; B TRACK COUNT (0, 1)

; C SECTOR COUNT (1,2,. . .,26)

; DE (SCRATCH REGISTER PAIR)

; HL LOAD ADDRESS

; SP SET TO STACK ADDRESS

éTART: LX! SP,3380H ;SET STACK POINTER TO SCRATCH
LXl H, 3380H ';QE'E'EASE LOAD ADDRESS
MVI B, 0 ;START WITH TRACK 0

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RDTRK:

RDSEC:

;READ NEXT TRACK (INITIALLY 0)
MVI C 1 ;READ STARTING WITH SECTOR 1

;READ NEXT SECTOR
CALL READSEC ;USER-SUPPLIED SUBROUTINE

LX1 D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2
;PAGE

DAD D ;HL = HL + 128

INR C ;SECTOR = SECTOR +1

MOV AC ;CHECK FOR END OF TRACK

CPI 27

JC RDSEC ;CARRY GENERATED IF SECTOR < 27

; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

INR B

MOV AB ;TEST FOR LAST TRACK

CPI 2

JC RDTRK ;CARRY GENERATED IF TRACK < 2

; ARRIVE HERE AT END OF LOAD, HALT FOR NOW

HLT

; USER-SUPPLIED SUBROUTINE TO READ THE DISK

READSEC:

; ENTER WITH TRACK NUMBER IN REGISTER B,

SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

..

perform disk read at this point, branch to

label START if an error occurs

..

POPH ;RECOVER HL

POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

This program is assembled and listed in Appendix B for reference purposes, with an
assumed origin of 100H. The hexadecimal operation codes that are listed on the left may
be useful if the program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing only a few
operations in the GETSYS program given above, as shown in Appendix C. The register
pair HL becomes the dump address (next address to write), and operations upon these
registers do not change within the program. The READSEC subroutine is replaced by a
WRITESEC subroutine, which performs the opposite function: data from address HL are
written to the track given by register B and sector given by register C. It is often useful to
combine GETSYS and PUTSYS into a single program during the test and development
phase, as shown in Appendix C.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 135

6.5 Diskette Organization

The sector allocation for the standard distribution version of CP/M is given here for
reference purposes. The first sector (see the table on the following page) contains an
optional software boot section. Disk controllers are often set up to bring track 0, sector 1,
into memory at a specific location (often location 0000H). The program in this sector,
called BOOT, has the responsibility of bringing the remaining sectors into memory
starting at location 3400H+b. If the user’s controller does not have a built-in sector load,
the programin track 0, sector 1 can beignored. In this case, load the program from track 0,
sector 2, to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings track 0, sector 1,
into absolute address 3000H. Upon loading this sector, control transfers to location
3000H, where the bootstrap operation commences by loading the remainder of track 0
and all of track 1 into memory, starting at 3400H+b. The user should note that this
bootstrap loader is of little use in a non-MDS environment, although it is useful to
examine it since some of the boot actions will have to be duplicated in the user’s cold start
loader.

Track# Sector# Page# Memory Address CP/M Module name
00 01 (boot address) Cold Start Loader
00 02 00 3400H+b CCP

’ 03 ' 3480H+b '

' 04 01 3500H+b

’ 05 ’ 3580H+b '

’ 06 02 3600H+b '

' 07 ' 3680H+b ’

' 08 03 3700H+b

’ 09 ' 3780H+b ’

’ 10 04 3800H+b ’

' 11 ’ 3880H+b ’

' 12 05 3900H+b '

' 13 ' 3980H+b '

' 14 06 3A00H+b '

' 15 ' 3A80H+b '

’ 16 07 3B00OH+b '
00 17 ' 3B80H+b CCP
00 18 08 3C00H+b BDOS

' 19 ’ 3C80H+b '

' 20 09 3D00H+b '

' 21 ' 3D80H+b '

' 22 10 3EQO0H+b '

' 23 ’ 3E80H+b

' 24 11 3FO0H+b '

: 25 ’ 3F80H+b '

! 26 12 4000H+b ’
01 01 ’ 4080H+b ’

’ 02 13 4100H+b '

' 03 ’ 4180H+b '

' 04 14 4200H+b ’

' 05 ' 4280H+b

' 06 15 4300H+b

’ 07 ' 4380H+b

08 16 4400H+b ’

’ 09 ' 4480H+b '

136 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

01
07

01
01
02-76

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

01-26

18
19
20
21
22
23
2,4

25

4500H+b
4580H+b
4600H+b
4680H+b
4700H+b
4780H+b
4800H+b
4880H+b
4900H+b
4980H+b
4A00H+b
4A80H+b
4B00H+b
4B80H+b
4CO00H+b
4C80H+b
4DO00H+b

6.6 The BIOS Entry Points

The entry points into the BIOS from the cold start loader and BDOS are detailed
below. Entry to the BIOSis through a“jump vector”located at 4A00H+b, as shown below
(see Appendices A and B, as well). The jump vector is a sequence of 17 jump instructions
that send program control to the individual BIOS subroutines. The BIOS subroutines
may be empty for certain functions (i.e., they may contain asingle RET operation) during
reconfiguration of CP/M, but the entries must be present in the jump vector.

The jump vector at 4A00H+b takes the form shown below, where the individual jump
addresses are given to the left:

4A00H+b

4A03H+b
4A06H+b

4A09H+b
4A0CH+b

4A0FH+b
4A12H+b

4A15H+b
4A18H+b

4A1BH+b
4A1EH+b
4A21H+b

JMP BOOT

JMP WBOOT
JMP CONST

JMP CONIN
JMP CONOUT

JMP LIST
JMP PUNCH

JMP READER
JMP HOME

JMP SELDSK
JMP SETTRK
JMP SETSEC

BDOS
BIOS

’

BIOS
BIOS

(directory and data)

; ARRIVE HERE FROM COLD

START LOAD

; ARRIVE HERE FOR WARM START
; CHECK FOR CONSOLE CHAR

READY

; READ CONSOLE CHARACTER IN

; WRITE CONSOLE CHARACTER
ouT

; WRITE LISTING CHARACTER OUT
; WRITE CHARACTER TO PUNCH

DEVICE

; READ READER DEVICE
; MOVE TO TRACK 00 ON

SELECTED DISK

; SELECT DISK DRIVE
; SET TRACK NUMBER
; SET SECTOR NUMBER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 137

4A24H+b JMP SETDMA ; SET DMA ADDRESS

4A27H+b JMP READ ; READ SELECTED SECTOR
4A2AH+b JMP WRITE ; WRITE SELECTED SECTOR
4A2DH+b JMP LISTST ; RETURN LIST STATUS
4A30H+b JMP SECTRAN ; SECTOR TRANSLATE
SUBROUTINE

Each jump address corresponds to a particular subroutine that performs the specific
function, as outlined below. There are three major divisions in the jump table: the system
(re)initialization, which results from calls on BOOT and WBOOT; simple character I/O
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST; and diskette 1/O performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character 1/O operations are assumed to be performed in ASCII, upper and
lower case, with high order (parity bit) set to zero. An end-of-file condition for an input
device is given by an ASCII control-z (1AH). Peripheral devices are seen by CP/M as
“logical” devices and are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subroutines
(LIST, PUNCH, and READER may be used by PIP, but not the BDOS). Further, the
LISTST entry is currently used only by DESPOOL, the print spooling utility. Thus, the
initial version of CBIOS may have empty subroutines for the remaining ASCII devices.

The characteristics of each device are

CONSOLE The principal interactive console that communicates with the
operator, accessed through CONST, CONIN, and CONOUT;
typically, the CONSOLE is a device such as a CRT or teletype.

LIST The principal listing device, if it exists on the user’s system, is
usually a hard-copy device, such as a printer or teletype.

PUNCH The principal tape punching device, if it exists, is normally a
high-speed paper tape punch or teletype.

READER The principal tape reading device, such as a simple optical
reader or teletype.

A single peripheral can be assigned as the LIST, PUNCH, and READER device
simultaneously. If no peripheral device is assigned as the LIST, PUNCH, or READER
device, the CBIOS created by the user may give an appropriate error message so that the
system does not “hang” if the device is accessed by PIP or some other user program.
Alternately, the PUNCH and LIST routines can just simply return, and the READER
routine can return with a 1AH (ctl-Z) in register A to indicate immediate end-of-file.

For added flexibility, the user can optionally implement the “IOBYTE” function,
which allows reassignment of physical and logical devices. The IOBYTE function creates
a mapping of logical to physical devices that can be altered during CP/M processing (the
user should see the STAT command). The definition of the IOBYTE function corres-
ponds to the Intel standard as follows: a single location in memory (currently location
0003H) is maintained, called IOBYTE, which defines the logical to physical device map-
ping that is in effect at a particular time. The mapping is performed by splitting the

138 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

IOBYTE into four distinct fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below.

most significant least significant
IOBYTE AT 003H LIST PUNCH READER CONSOLE
bits 6, 7 bits 4, 5 bits 2, 3 bits 0, 1

The value in each field can be in the range 0-3, defining the assigned source or
destination of each logical device. The values that can be assigned to each field are given
below

CONSOLE field (bits 0,1)

0 console is assigned to the console printer device (TTY:)

1 console is assigned to the CRT device (CRT:)

2 batch mode: use the READER as the CONSOLE input, and the
LIST device as the CONSOLE output (BAT:)

3 user defined console device (UC1:)

READER field (bits 2,3)

0 READER is the teletype device (TTY:)

1 READER is the high speed reader device (PTR:)
2 user defined reader # 1 (UR1:)

3 user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

0 PUNCH is the teletype device (TTY:)
1 PUNCH is the high speed punch device (PTP:)
2 user defined punch # 1 (UP1:)
3 user defined punch # 2 (UP2:)
LIST field (bits 6,7)
0 LIST is the teletype device (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:)
3 user defined list device (UL1:)

The implementation of the IOBYTE is optional and affects only the organization of
the CBIOS. No CP/M systems use the IOBYTE (although they tolerate the existence of
the IOBYTE at location 0003H), except for PIP, which allows access to the physical
devices, and STAT, which allows logical-physical assignments to be made or displayed
(for more information, the user should see Chapter 1). In any case the IOBYTE imple-
mentation should be omitted until the basic CBIOS is fully implemented and tested; then
the user should add the IOBYTE to increase the facilities.

Disk I/O is always performed through a sequence of calls on the various disk access
subroutines that set up the disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved in the I/O operation. After all
these parameters have been set up, a call is made to the READ or WRITE function to
perform the actual I/O operation. There is often a single call to SELDSK to select a disk
drive, followed by a number of read or write operations to the selected disk before
selecting another drive for subsequent operations. Similarly, there may be a single call to
set the DMA address, followed by several calls that read or write from the selected DMA
address before the DMA address is changed. The track and sector subroutines are always
called before the READ or WRITE operations are performed.

The READ and WRITE routines should perform several retries (10 is standard) before
reporting the error condition to the BDOS. If the error condition is returned to the
BDOS, it will report the error to the user. The HOME subroutine may or may not

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 139

actually perform the track 00 seek, depending upon controller characteristics; the impor-
tant point is that track 00 has been selected for the next operation and is often treated in
exactly the same manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine are given below.

140

BOOT

WBOOT

CONST

CONIN

The BOOT entry point gets control from the cold start loader
and is responsible for basic system initialization, including
sending a sign-on message (which can be omitted in the first
version). If the IOBYTE function is implemented, it must be
set at this point. The various system parameters that are set
by the WBOOT entry point must be initialized, and control is
transferred to the CCP at 3400+b for further processing. Note
that register C must be set to zero to select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user program
branches to location 0000H, or when the CPU is reset from
the front panel. The CP/M system must be loaded from the
first two tracks of drive A up to, but not including, the BIOS
(or CBIOS, if the user has completed the patch). System
parameters must be initialized as shown below:

location 0,1,2 Set to JMP WBOOT for warm
starts (000H: JMP 4A03H+b)

location 3 Set initial value of IOBYTE, if
implemented in the CBIOS

location 4 High nibble = current user no; low
nibble = current drive

location 5,6,7 Set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H+b)

(The user should refer to Section 6.9 for complete details of
page zero use.) Upon completion of the initialization, the
WBOOT program must branch to the CCP at 3400H+b to
(re)start the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization. The WBOOT
routine should read location 4 in memory, verify that it is a
legal drive, and pass it to the CCP in register C.

The user should sample the status of the currently assigned
console device and return OFFH in register A if a character is
ready toread and 00H in register A if no console characters are
ready.

The next console character is read into register A, and the
parity bit is set (high order bit) to zero. If no console character
is ready, the user waits until a character is typed before
returning.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

The user sends the character from register C to the console
output device. The character is in ASCII, with high order
parity bit set to zero. The user may want toinclude a time-out
on a line feed or carriage return, if the console device requires
some time interval at the end of the line (such as a TI Silent 700
terminal). The user can filter out control characters that cause
the console device to react in a strange way (a control-z causes
the Lear Seigler terminal to clear the screen, for example).

The user sends the character from register C to the currently
assigned listing device. The character is in ASCII with zero
parity bit.

The user sends the character from register C to the currently
assigned punch device. The character is in ASCII with zero

parity.

The user reads the next character from the currently assigned
reader device into register A with zero parity (high order bit
must be zero); an end-of-file condition is reported by return-
ing an ASCII control-z(1AH).

The user moves the disk head of the currently selected disk
(initially disk A) to the track 00 position. If the controller
allows access to the track 0 flag from the drive, the head is
stepped until the track 0 flag is detected. If the controller does
not support this feature, the HOME callis translated into a call
to SETTRK with a parameter of 0.

The user selects the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1 for drive
B, and so on up to 15 for drive P (the standard CP/M distribu-
tion version supports four drives). On each disk select,
SELDSK must return in HL the base address of a 16-byte area,
called the Disk Parameter Header, described in Section 6.10.
For standard floppy disk drives, the contents of the header and
associated tables do not change; thus, the program segment
included in the sample CBIOS performs this operation auto-
matically. If there is an attempt to select a nonexistent drive,
SELDSK returns HL=0000H as an error indicator. Although
SELDSK must return the header address on each call, it is
advisable to postpone the physical disk select operation until
an 1/O function (seek, read, or write) is actually performed,
since disk selects often occur without utimately performing
any disk I/O, and many controllers will unload the head of the
current disk before selecting the new drive. This would cause
an excessive amount of noise and disk wear. The least signifi-
cant bit of register E is zero if this is the first occurrence of the
drive select since the last cold or warm start.

Register BC contains the track number for subsequent disk
accesses on the currently selected drive. The sector number in
BC is the same as the number returned from the SECTRAN
entry point. The user can choose to seek the selected track at

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 141

142

SETSEC

SETDMA

READ

WRITE

LISTST

this time or delay the seek until the next read or write actually
occurs. Register BC can take on values in the range 0-76
corresponding to valid track numbers for standard floppy disk
drives and 0-65535 for nonstandard disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disk accesses on the currently selected drive. The
sector number in BC is the same as the number returned from
the SECTRAN entry point. The user can choose to send this
information to the controller at this point or delay sector
selection until a read or write operation occurs.

Register BC contains the DMA (disk memory access) address
for subsequent read or write ‘operations. For example, if B =
00H and C = 80H when SETDMA is called, all subsequent read
operations read their data into 80H through OFFH and all
subsequent write operations get their data from 80H through
OFFH, until the next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. The controller need not actually
support direct memory access. If, for example, all data
transfers are through 1/O ports, the CBIOS that is con-
structed will use the 128-byte area starting at the selected
DMA address for the memory buffer during the subsequent
read or write operations.

Assuming the drive has been selected, the track has been set,
the sector has been set, and the DMA address has been speci-
fied, the READ subroutine attempts to read one sector based
upon these parameters and returns the following error codes
in register A:

0 no errors occurred

1 nonrecoverable error condition occurred

Currently, CP/M responds only to a zero or nonzero value as
the return code. That is, if the value in register A is 0, CP/M
assumes that the disk operation was completed properly. If an
error occurs, however, the CBIOS should attempt at least 10
retries to see if the error is recoverable. When an error is
reported the BDOS will print the message “BDOS ERR ON x:
BAD SECTOR”. The operator then has the option of typing
carriage-return to ignore the error, or ctl-C to abort.

The user writes the data from the currently selected DMA
address to the currently selected drive, track, and sector. For
floppy disks, the data should be marked as “nondeleted data”
to maintain compatibility with other CP/M systems. The error
codes given in the READ command are returned in register A,
with error recovery attempts as described above.

The user returns the ready status of the list device used by the
DESPOOL program to improve console response during its
operation. The value 00 is returned in A if the list device is not
ready to accept a character and OFFH if a character can be sent

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

to the printer. A 00 value should be returned if LIST status is
not implemented.

SECTRAN The user performs logical to physical sector translation to
improve the overall response of CP/M. Standard CP/M sys-
tems are shipped with a “skew factor” of 6, where six
physical sectors are skipped between each logical read opera-
tion. This skew factor allows enough time between sectors for
most programs to load their buffers without missing the next
sector. In particular computer systems that use fast proces-
sors, memory, and disk subsystems, the skew factor may be
changed to improve overall response. However, the user
should mtaintain a single density IBM-compatible version of
CP/M for information transfer into and out of the computer
system, using a skew factor of 6. In general, SECTRAN
receives a logical sector number relative to zero in BC and a
translate table address in DE. The sector number is used as an
index into the translate table, with the resulting physical
sector number in HL. For standard systems, the table and
indexing code is provided in the CBIOS and need not be
changed.

6.7 A Sample BIOS

The program shown in Appendix B can serve as a basis for a user’s first BIOS. The
simplest functions are assumed in this BIOS, so that the user can enter it through a front
panel, if absolutely necessary. The user must alter and insert code into the subroutines
for CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area reserved in page zero
(see section 6.9) for the BIOSisused in this program, so that it could be implemented in
ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial sign-on
message and perform better error recovery. The subroutines for LIST, PUNCH, and
READER can be filled out and the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader

The program shown in Appendix E can serve as a basis for a cold start loader. The disk
read function must be supplied by the user, and the program must be loaded somehow
starting at location 0000. Space is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually, the user will probably
want to get this loader onto the first disk sector (track 0, sector 1) and cause the controller
to load it into memory automatically upon system start up. Alternatively, the cold start
loader can be placed into ROM, and above the CP/M system. In this case, it will be
necessary to originate the program at a higher address and key in a jump instruction at
system start up that branches to the loader. Subsequent warm starts will not require this
key-in operation, since the entry point WBOOT gets control thus bringing the system in
from disk automatically. The skeletal cold start loader has minimal error recover, which
may be enhanced in later versions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 143

6.9 Reserved Locations in Page Zero

Main memory page zero, between locations 00H and OFFH, contains several segments
of code and data that are used during CP/M processing. The code and data areas are given
below for reference

144

Locations
from to

0000H-0002H

0003H-0003H

0004H-0004H

0005H-0007H

0008H-0027H
0030H-0037H

0038H-003AH

003BH-003FH

0040H-004FH

0050H-005BH

005CH-007CH

007DH-007FH

0080H-00FFH

Contents

Contains a jump instruction to the warm start entry
point at location 4A03H+b. This allows a simple pro-
grammed restart (JMP 0000H) or manual restart from
the front panel.

Contains the Intel standard IOBYTE, which is optionally
included in the user’s CBIOS, as described in Section 6.6.

Current default drive number (0=A,...,15=P).

Contains a jump instruction to the BDOS and serves two
purposes: JMP 0005H provides the primary entry point
to the BDOS, as described in Chapter 5, and LHLD
0006H brings the address field of the instruction to the
HL register pair. This value is the lowest address in
memory used by CP/M (assuming the CCP is being
overlaid). The DDT program will change the address
field to reflect the reduced memory size in debug mode.

(Interrupt locations 1 through 5 not used.)

(Interrupt location 6, not currently used; reserved.)
Restart 7; contains a jump instruction into the DDT or
SID program when running in debug mode for pro-
grammed breakpoints, but is not otherwise used by

CP/M.

(Not currently used; reserved.)

A 16-byte area reserved for scratch by CBIOS, but is not
used for any purpose in the distribution version of
CP/M.

(Not currently used; reserved.)

Default file control block produced for a transient pro-
gram by the Console Command Processor.

Optional default random record position.

Default 128-byte disk buffer (also filled with the com-
mand line when a transient is loaded under the CCP).

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

This information is set up for normal operation under the CP/M system, but can be
overwritten by a transient program if the BDOS facilities are not required by the
transient.

If, for example, a particular program performs only simple I/O and must begin
execution at location 0, it can first be loaded into the TPA, using normal CP/M facilities,
with a small memory move program that gets control when loaded (the memory move
program must get control from location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to move the entire memory
image down to location 0 and pass control to the starting address of the memory load. If
the BIOS is overwritten or if location 0 (containing the warm start entry point) is
overwritten, the operator must bring the CP/M system back into memory with a cold
start sequence.

6.10 Disk Parameter Tables

Tables are included in the BIOS that describe the particular characteristics of the disk
subsystem used with CP/M. These tables can be either hand-coded, as shown in the
sample CBIOS in Appendix B, or automatically generated using the DISKDEF macro
library, as shown in Appendix F. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte) disk parameter header that
contains information about the disk drive and provides a scratchpad area for certain
BDOS operations. The format of the disk parameter header for each drive is shown
below.

Disk Parameter Header
| XLT | 0000 | 0000 | 0000 | DIRBUF |DPB | CSV__ | ALV]
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk Parameter Header
(DPH) element is

XLT Address of the logical to physical translation vector, if used for
this particular drive, or the value 0000H if no sector transla-
tion takes place (i.e., the physical and logical sector numbers
are the same). Disk drives with identical sector skew factors
share the same translate tables.

0000 Scratchpad values for use within the BDOS (initial value is
unimportant).

DIRBUF Address of a128-byte scratchpad area for directory operations
within BDOS. All DPHs address the same scratchpad area.

DPB Address of a disk parameter block for this drive. Drives with
identical disk characteristics address the same disk parameter

block.

Ccsv Address of a scratchpad area used for software check for
changed disks. This address is different for each DPH.

ALV Address of a scratchpad area used by the BDOS to keep disk
storage allocation information. This address is different for
each DPH.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 145

Given n disk drives, the DPHs are arranged in a table whose first row of 16 bytes
corresponds to drive 0, with the last row corresponding to drive n-1. The table thus

appears as

DPBASE:

00 | XLT 00 | 0000 | 0000 | 0000 | DIRBUF| DBP 00| CSV 00| ALV 00|

01 | XLT 01 | 0000 | 0000 | 0000 | DIRBUF| DBP 01| CSV 01] ALV 01|
(and so on through)

n-1 | XLTn-1 | 0000 | 0000 | 0000 | DIRBUF| DBPn-1| CSVn-1| ALVn-1|

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base address of the DPH
for the selected drive. The following sequence of operations returns the table address,
with a 0000H returned if the selected drive does not exist.

NDISKS EQU 4 :NUMBER OF DISK DRIVES
SELDSK: :SELECT DISK GIVEN BY BC
LXI H,0000H ;ERROR CODE
MOV AC :DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ‘RET IF ERROR
:NO ERROR, CONTINUE
MOV L.C :LOW(DISK)
MOV H,B :HIGH(DISK)
DAD H 2
DAD H *4
DAD H 8
DAD H *16
LXI D,DPBASE;FIRST DPH
DAD D :DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-1) are located elsewhere in the BIOS,
and simply correspond one-for-one with the logical sector numbers zero through the
sector count 1. The Disk Parameter Block (DPB) for each drive is more complex. A
particular DPB, which is addressed by one or more DPHs, takes the general form

|SPT |BSH |BLM | EXM |DSM | DRM | ALO | AL1 | CKS | OFF |
16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the 8b or 16b indicator below the field.

SPT is the total number of sectors per track.

BSH is the data allocation block shift factor, determined by the data block
allocation size.

BLM is the data allocation block mask (2[BSH-1]).

EXM is the extent mask, determined by the data block allocation size and

the number of disk blocks.
DSM determines the total storage capacity of the disk drive.

146 . ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DRM determines the total number of directory entries that can be stored
on this drive. (ALO,AL1 determine reserved directory blocks.)

CKS is the size of the directory check vector.
OFF is the number of reserved tracks at the beginning of the (logical)
disk.

The values of BSH and BLM determine (implicitly) the data allocation size BLS, which is
not an entry in the DPB. Given that the designer has selected a value for BLS, the values
of BSH and BLM are shown in the tabulation below.

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192 6 63
16384 7 127

where all values are in decimal. The value of EXM depends upon both the BLS and
whether the DSM value is less than 256 or greater than 255. For DSM < 256 the value of

EXM is given by:

BLS EXM
1024 0
2048 1
4096 3
8192 7
16384 15

For DSM > 255 the value of EXM is given by:

BLS EXM
1024 N/A
2048 0
4096 1
8192 3
16384 7

The value of DSM is the maximum data block number supported by this particular
drive, measured in BLS units. The product BLS times (DSM+1) is the total number of
bytes held by the drive and, of course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

The DRM entry is the one less than the total number of directory entries that can take
on a 16-bit value. The values of ALO and AL1, however, are determined by DRM. The
values ALO and AL1 can together be considered a string of 16-bits, as shown below.

| ALO AL1 I

~rrrrrr T

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte labeled ALO and 15
corresponds to the low order bit of the byte labeled AL1. Each bit position reserves adata
block for number of directory entries, thus allowing a total of 16 data blocks to be

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 147

assigned for directory entries (bits are assigned starting at 00 and filled to the right until
position 15). Each directory entry occupies 32 bytes, resulting in the tabulation below.

BLS Directory Entries
1024 32 times # bits
2048 64 times # bits
4096 128 times # bits
8192 256 times # bits
16384 512 times # bits

Thus, if DRM = 127 (128 directory entries) and BLS = 1024, there are 32 directory entries
per block, requiring 4 reserved blocks. In this case, the 4 high order bits of ALO are set,
resulting in the values ALO = OFOH and AL1 = 00H.

The CKS value is determined as follows: if the disk drive media is removable, then
CKS = (DRM+1)/4, where DRM is the last directory entry number. If the media are fixed,
then set CKS = 0 (no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. This value is automatically added whenever SETTRK is
called and can be used as a mechanism for skipping reserved operating system tracks or
for partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address the same DPB if
their drive characteristics are identical. Further, the DPB can be dynamically changed
when a new drive is addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is invoked.

Returning back to the DPH for a particular drive, the two address values CSV and
ALV remain. Both addresses reference an area of uninitialized memory following the
BIOS. The areas must be unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the
directory check information for this particular drive. If CKS = (DRM+1)/4, one must
reserve (DRM+1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of data
blocks allowed for this particular disk and is computed as (DSM/8)+1.

The CBIOS shown in Appendix B demonstrates an instance of these tables for
standard 8-inch single density drives. It may be useful to examine this program and
compare the tabular values with the definitions given above.

6.11 The DISKDEF Macro Library

A macro library is shown in Appendix F, called DISKDEF, which greatly simplifies the
table construction process. One must have access to the MAC macro assembler, of
course, to use the DISKDEF facility, while the macro library is included with all CP/M 2
distribution disks.

A BIOS disk definition consists of the following sequence of macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0...
DISKDEF 1.

148 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DISKDEF n-1

where the MACLIB statement loads the DISKDEF.LIB file (on the same disk as the BIOS)
into MAC’s internal tables. The DISKS macro call follows, which specifies the number of
drives to be configured with the user’s system, where n is an integer in the range 1 to 16.
A series of DISKDEF macro calls then follow that define the characteristics of each logical
disk, 0 through n-1 (corresponding to logical drives A through P). The DISKS and
DISKDEF macros generate the in-line fixed data tables described in the previous section
and thus must be placed in a nonexecutable portion of the BIOS, typically directly
following the BIOS jump vector.

The remaining portion of the BIOS is defined following the DISKDEF macros, with
the ENDEF macro call immediately preceding the END statement. The ENDEF (End of
Diskdef) macro generates the necessary uninitialized RAM areas, which are located in
memory above the BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, 0 to n-1.
fsc is the first physical sector number (0 or 1).
Isc is the last sector number.
skf is the optional sector skew factor.
bls is the data allocation block size.
dks is the number of blocks on the disk.
dir is the number of directory entries.
cks is the number of “checked” directory entries.
ofs is the track offset to logical track 00.
[0] is an optional 1.4 compatibility flag.

The value dn is the drive number being defined with this DISKDEF macro invocation.
The fsc parameter accounts for differing sector numbering systems and is usually 0 or 1.
The Isc is the last numbered sector on a track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation table accodrding to the
skew.

If the number of sectors is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table is created if the skf
parameter is omitted (or equal to 0). The bls parameter specifies the number of bytes
allocated to each data block, and takes on the values 1024, 2048, 4096, 8192, or 16384.
Generally, performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically close on the disk.
Further, each directory entry addresses more data and the BIOS-resident ram space is
reduced.

The dks parameter specifies the total disk size in bls units. That is, if the bls = 2048 and
dks = 1000, the total disk capacity is 2,048,000 bytes. If dks is greater than 255, the block
size parameter bls must be greater than 1024. The value of dir is the total number of
directory entries, which may exceed 255, if desired. The cks parameter determines the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 149

number of directory items to check on each directory scan and is used internally to detect
changed disks during system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the disk read/only
so that data are not subsequently destroyed).

As stated in the previous section, the value of cks = dir when the medium is easily
changed, as is the case with a floppy disk subsystem. If the disk is permanently mounted,
the value of cks is typically 0, since the probability of changing disks without a restart is
low. The ofs value determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system space or to simulate
several logical drives on a single large capacity physical drive. Finally, the [0] parameter is
included when file compatibility is required with versions of 1.4 that have been modified
for higher density disks. This parameter ensures that only 16K is allocated for each
directory record, as was-the case for previous versions. Normally, this parameter is not
included.

For convenience and economy of table space, the special form

DISKDEF i

gives disk i the same characteristics as a previously defined drive j. A standard four-drive
single density system, which is compatible with version 1.4, is defined using the following
macro invocations:

DISKS 4

DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1,0

DISKDEF 2,0

DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per track (numbered 1
through 26), with 6 sectors skipped between each access, 1024 bytes per data block, 243
data blocks for a total of 243K-byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS macro generates n DPHs, starting at the DPH table address DPBASE
generated by the macro. Each disk header block contains sixteen bytes, as described
above, and correspond one-for-one to each of the defined drives. In the four-drive
standard system, for example, the DISKS macro generates a table of the form:

DPBASE EQU$

DPEO: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALVO
DPE1: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
DPE2: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
DPES3: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table
addresses for each drive 0 through 3. The values contained within the DPH are described
in detail in the previous section. The check and allocation vector addresses are generated
by the ENDEF macro in the ram area following the BIOS code and tables.

The user should note that if the skf (skew factor) parameter is omitted (or equal to 0),
the translation table is omitted and a 0000H value is inserted in the XLT position of the
DPH for the disk. In a subsequent call to perform the logical to physical translation,
SECTRAN receives a translation table address of DE = 0000H and simply returns the
original logical sector from BC in the HL register pair. A translate table is constructed
when the skf parameter is present, and the (nonzero) table address is placed into the

150 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

corresponding DPHs. The tabulation shown below, for example, is constructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

XLTO: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data areas are defined.
These data areas need not be a part of the BIOS that is loaded upon cold start, but must be
available between the BIOS and the end of memory. The size of the uninitialized RAM
area is determined by EQU statements generated by the ENDEF macro. For a standard
four-drive system, the ENDEF macro might produce

4C72 = BEGDAT EQU $
(data areas)
4DBO = ENDDAT EQU $
013C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at 4DBOH-1, and
occupies 013CH bytes. The user must ensure that these addresses are free for use after
the system is loaded.

After modification, the user can utilize the STAT program to check drive characteris-
tics, since STAT uses the disk parameter block to decode the drive information. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A,...,P) and displays the values shown
below.

128-byte record capacity
kilobyte drive capacity
32-byte directory entries
checked directory entries
records/extent
records/block
sectors/track

reserved tracks

TLoeoaxn

Three examples of DISKDEF macro invocations are shown below with corresponding
STAT parameter values (the last produces a full 8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2
DISKDEF 0,1,58,,2048,1024,300,0,2

r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2
DISKDEF 0,1,58,,16384,512,128,128,2

r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 151

6.12 Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M BDOS includes information
that allows effective sector blocking and deblocking where the host disk subsystem has a
sector size that is a multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm that can be included within the BIOS and that uses the BDOS
information to perform the operations automatically.

On each call to WRITE, the BDOS provides the following information in register C:

0 = normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data block

Condition 0 occurs whenever the next write operation is into a previously written area,
such as a random mode record update, when the write is to other than the first sector of
an unallocated block, or when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs when the first
record (only) of a newly allocated data block is written. In most cases, application
programs read or write multiple 128-byte sectors in sequence; thus, there is little
overhead involved in either operation when blocking and deblocking records, since
preread operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal form (this file is
included on your CP/M disk). enerally, the algorithms map all CP/M sector read opera-
tions onto the host disk through an intermediate buffer that is the size of the host disk
sector. Throughout the program, values and variables that relate to the CP/M sector
involved in a seek operation are prefixed by sek, while those related to the host disk
system are prefixed by hst. The equate statements beginning on line 29 of Appendix G
define the mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code starting on
line 57, while the SELDSK entry point must be augmented by the code starting on line 65.
The user should note that although the SELDSK entry point computes and returns the
Disk Parameter Header address, it does not physically select the host disk at this point (it
is selected later at READHST or WRITEHST). Further, SETTRK, SETTRK, and
SETDMA simply store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines 110 and 125,
respectively. These subroutines take the place of your previous READ and WRITE
operations.

The actual physical read or write takes place at either WRITEHST or READHST,
where all values have been prepared: hstdsk is the host disk number, hsttrk is the host
track number, and hstsec is the host sector number (which may require translation to a
physical sector number). The user must insert code at this point that performs the full
host sector read or write into or out of the buffer at hstbuf of length hstsiz. All other
mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80-megabyte hard disk unit that was
originally configured for 128-byte sectors, producing approximately 35 megabytes of
formatted storage. When configured for 512-byte host sectors, usable storage increased
to 57 megabytes, with a corresponding 400% improvement in overall response. In this
situation, there is no apparent overhead involved in deblocking sectors, with the advan-
tage that user programs still maintain 128-byte sectors. This is primarily because of the
information provided by the BDOS, which eliminates the necessity for preread
operations.

152 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(uoiod juapisal) sop diseq: qudo+ygos

J10ss8204d 8josu0d wdo Jo aseq:

walsAs w/do a|qejeoo|a. ajesauab:

wajsAs 3s9) ul doo jo aseq:

s0Iq 1s9} JI aNJ} !
nuwm—m*-”
«8N4}, JO dN|eA:

2'2 UOISIaA!

yojed-¢
yoied

yoo9i

y0o000
1s8} Jou

yooreo
ise)

as|e}
anJ} jou
Ujo

nba
nba
640

nba

jipus
nba
]
jipus
nba
|

nba
nbe
nba

0S6£6 ‘EBlui0}ljed

anoub oyloed ‘6.6 xoq

yoseasal |eybip

08614 (9) wybuAdoo

nba

0861 ‘A1eniga} g'g UoISIaA

(uoisuan Ayisuap abuils aaup inoy)
¢'¢ wy/do 10} S18ALIP O/1 008-SPW

= 9080
= 0000
009t

= 0091

= 0000

= 0000
= 0000
=4

= 9100

~TANNOTHDOMNODIDO T ANMNMITWOONOD
—rrrrrecrrrecrrr e NN ANNNNNNAN N

—ANNOTWOVDONOO®O
-

(SOIg) weisAs O/] diseg SAW Y1 ‘v xipuaddy

153

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

jo0q dwl
S8UIIN0J |BNPIAIPUI 10} 10}08A dwn|

ssaippe ewp }8said wouy 10}09S/308.)} M
ssalppe ewp }9said 0] 10}08s/)0e4]} peal peal
(s41910wesed o) ay} dn }8s 0} s||ed SNoIAaId SWNSSE 3}lUM pue peal)

(uos Ajeniul) ssaippe ewp Juanbasqgns jos ewples

allim/peal Juanbasgns 1oy (9g ‘ ° * * ‘L) SsaJppe 10}08s }8S 098s)8s
a)um/peal Juenbasqns oy (92 © * * ‘D) SSaippe Xoeu) }9s Nnes
(*--2 ‘L ‘0) 9-ba1 Aq uanib ysiIp 109|8s)splos

(seyam pue speas juanbasqns wiojiad 0} pasn si Ydiym ‘spw

ay} 40y yo0|q Ja)awe.ed o) ay} dn-}as s||jed buimoj||o} ayy)

00)oeJ} 0} anow awoy
(e-H6a4 0} 3 nsau) ul Jopeas ade) 1aded Japeal
(0-621 ui Jeyds) 1no yound yound

(0-684 ul JeYd) 1N0 181 19
(0-6a1 Ui 1Y) 1N0 481ORIBYD B]OSUOCD INOUOD
(e-bas ur 3 nsau) ul J8}0BIBYD BJOSUOD uluod

Apeal Jayoeieyo i }4 = e-bau
ApeaJ Jajoeieyd ou §i 00 = e-Hbau
snje}s 9|osuod }Suod
(spw 10} swes ay) aie J00gm pue }00q)
(8149 O/1 BABS) lBlS Wiem 100gm
Jels p|oo j00q
suonouny Buimojjo} waopsad

10119 91048 O/I }SIP UO Sal}al Xew: ol nba
ssalppe 19))nq }nejop: 40800 nba

Hels uuem uo Xsip pabboj ise| Jo ssaippe: U000 nba
wy/do AQ pasn s)oel} ysIp JO Jaquinu’ 2 nba

peo| 0} s10108s JO Jequnu: gZL/jwddo nba

walsAs wdo jo (seyAq ui) yjbuay: qudo-¢ nba

Anai
3nq
ASIpo
1ssjjo
sjoasu
jwdo

91€9€9 0091

=000
= 0800
= 000
€000
9200
= 0091

€9
c9
19
09
6S
85
LS
oG
SS
12°]
€S
cs
LS
0S
6v
514
VA4
or
Sy
144
1524
v
84
oy
6€
8¢
L8
9t
GE
ye
€e
ce
e
oc

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

154

BaJe YO)BIOS!

40000 ‘Y0000

a|qe) ejejsuel): 40000 ‘eHx
SI10}08A J0||B ‘}o8yd: ZAle ‘2ASO
%00|q wued ‘ynq J1p! 2qdp ‘4nquip
BaIe YoJe.os: 40000 ‘Y0000

a|qe} aje|suedy! 40000 ‘ZHx
S10}09A 20| ‘}o8yo: LAjE ‘LASO
%00|q wued ‘ynq Jip: Lqdp ‘4nquip
eale yojesos! 40000 ‘U0000

a|qe} aje|suel) 40000 ‘LHX
S10]08A 20||e)28yo: OAl®e ‘0ASO
%00|q wued ‘ynqg Jip: 09dp ‘ynquip
eaJe yoje.os! 40000 ‘U0000

a|qe} aje|suel)! 40000 ‘O¥X
$)00|q Jojawe.ed %Sip O aseq: $
SYSIp Inoy! v

A1eiqi| uonuyep ysip ayy peoj: Jjopyisip
uel}o9s

snjess isy|! 1sisy|

allum

peal

ewpjlos

098}9S

pPINEL

Asp|es

awoy

Japeal

yound

st

1Nouo0d

uluoo

JSuod

joogm

Mp
Mp
Mp
Mp
Mp
Mp
mp
Mp
Mp
Mp
Mp
Mp
Mp
Mmp
nba
s)sIp
qljoew

dwl
dwl
dw/
dwl
dwl
dwl
dwl
dwf
dwl
dwl
dwl
dwi
dwf
dwl
dw(
dwl

:gadp

:gadp

‘jedp

:0edp
aseqdp

:?j00qM

00000000+2991
000091¢8+€£991
619¥6199+}G91
91€/8199+9G91
00000000+.2591
000091c8+ES91
61PLELOE+HIPIL
91€.8189+4v91
00000000+2¥91
00009128+E¥9L
819961P0+iE9L
91€/8199+4€91
00000000+2€91
000091c8+E€91L

=+E€91

2119¢€2 0€91
210.L€9 pPegl
L1B0g0 Bg9l
L1989 29l
2199¢€9 y29l
L19Bgd |29l
L1/egd 9|9l
LIPLEO ql91
L1889 8i91
L1GLED GI9L
Lieled ¢l
LIP9ED J091
L1B9€ED 9091
L1¥9€9 6091
L119€9 9091
91€9€2 €091

155

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9¢

0c

14"

8

4

(¥4

Gl

6

€

€c

Ll

L

S

14

61

el

L

8

a|ge)} aie|suely: $
Jos}j0! b4

azis %oayo! 9l
Looje: 0

0o0|je: 6l

xew A10}0a.1p: €9
L-92Is ¥sIp: cve
)SBeWw juixa: 0
)Sew 390|q: .
Hius X20|q! €
yoedy Jad oas! (¥4
300|q wued ysip! ¢$
18SH0 ‘v9 ‘v9 ‘epe ‘veol ‘9 ‘92 ‘L ‘0
$40)08A wued ‘ynq Ja1p: CAJB ‘EASD
%00|q 20jje }o8yd: €qdp ‘4nquip

ap
ap
ap
ap
qQp
Qp
ap
ap
Qp
ap
ap
ap
ap
ap
qp
ap
ap
ap

ap
nba

Mp
Mp
qaqp
ap
Mp
Mp
ap
ap
qp
Mp
nba
japysip
Mp
Mp

oHx

0qdp

90+1691
BlL+E691
y1+2c691
a0+1691
80+0691
c0+i891
G1+9891
J0+P89L
60+9891
€0+9891
L1+B89L

L 1+6891
q0+8891
S0+.891
61+9891
€1+G891
PO+¥891
L0+€891
L0+2891
=+c89l
0020+0891
000L+3.91
00+P .91
09+9/91
00ie+e.91
00¢i+8.91
00+4/91
10+9291
€0+G.91
00BL+E.91
=+g.91

619.6186+1991
91€.8199+9q991

Lel
oel
6ct
8¢t
el
9l
Scl
el
gcl
ccl
¥43
oct
611
8ii
LiL
9il
Sii
vil
1548
cti
LLL
oLt
601
801
201
901
SOt
0L
€0l
col
)%
001
66

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

156

uod jsew ydnuisyul’ usj0
pod uenel ydniseyui: upJo

nba
nba

SOALIP XSIP JNOj SBY WO}SAS SPW 8y} awnsse os|e am

JO}UOW 8Y} UIYIIM SeuinoIqns o/1 8y} sasn pue
Y008J0 1 SISIXe Jo}uOoW Spw 8y} sewnsse apod Buimo||o) ay)

‘SpW [9jul @Y} WO} SIBHIP YoIym walsAs Aue 10} paislje aq
ISnw pue ‘juswuodiaua Buiesado senoiued ayy 0} paiojie} aie
saunnoigns Bujurewa. ay) ‘apoo juspuadsapul—.ia||0J}u0D JO pud

A|Quiasse JO pua }e SiNd20 jopud

a|qe)} ajejsues] awes: 0MX

82|S 10}09A WNSHO9YD swes! 0sso
9ZIS 10103A UOI}BD0| |8 Bwes! os|e
siajaweled jusjeAinba! ogdp

o‘e

a|ge} aje|suel) awes: oux

92ZIS 10}09A WNSHI9Yyd awes: 0SSO
82IS 10}08A UoIled0||e dwes: os|e
siajoweued jusjeAinba! oqdp

0°c

a|qe) alejsues} awes: 03X

9IS 10109A WINSY0aYd awes!: 0sso
92ZIS 10109A UOIJBDO||B Bwes! os|e
si9)aweled juajeainba! oqdp

0°‘tL

cc

9l

ol

14

ve

8l

cl

nba
nba
nba
nba
jepsip
nba
nba
nba
nba
jopysIp
nba
nba
nba
nba
jopysip
qp

ap

ap

ap

aqp

ap

qp

9400
Pi00

=+2891
=+0100
=+}100
=+g/91

=+2891
=+0100
=+100
=+€/91

=+¢891}
=+0100
=+100
=+€/9|

91+4d691L
oL+e69l
B0+6691
¥0+8691
81+.691
cL+9691
00+G691}

SS9l
ol
€91
c9l
191
09t
6S1
8G1
LSt
961
GGl
1412
£G1
cst
ISL
oSt
514"
114"
VA4S
ovi
14
1443
evi
crl
ivi
ovi
6¢€l
8el
LE1
9€!l
Sel
vel
gel
cel

157

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

soiq ajdwexa »egg!

/CE,
189}

30

jipus

ap
)
ap

AA si1an w/do yxx :abessaw uoubis:

paay} aulj:

uinja. abeliied:
3YSew paystuly o/l
aALIp 9)euqijeda.!
uoniouUNy BUM!
uonoun} peal:

(indino) ssaippe ybiy qdoi:
(andino) ssaippe mo| qdoy:

(indui) 814q jnsau:
(andui) adA) jnsau
(¥ndui) snyejs ysip!
suod Of pPUBWIWOD XSIp O aseq:

yeo
ypPo
up
ue
ug
up

c+9seq
L+9seq

£+9seq
L+8seq
aseq

ysL

nbas
nba
nbe
nba
nba
nba

nba
nba

nba
nba
nba
nba

spuewwod pue suod %sip

e 49151681 0] J}/00 SNJBIS B|OSUOD!
921A8P }SI| 01 O WO4 ISI)!

821A8p yound 0} 9 wouy Jeyd yound:
1NO 3|0SU0D 0} O WU} JeYyd 38|0SU09:
e-6a4 0} u Jopea.:

e-6a1 0} J810BIBYD B)OSU0D!

(10449 }00qQ) QgUOW HEB)}SdI:

Jojuow spui’

ycielo

430810

yd20840
u60840
yg0840

yeosio

Uj040
400840

nba
nba
nba
nba
nba
nba
nba
nba

sajenba Jo0juow spw

(40nluow) 2 1s4 ‘(Joog wuem) g 1S4 8jqeusd:
uod joa3u09 ydnusyul:

QOLLESLELO
yeio

nba
nba

:uoubis

H
1

Apiol
|jeoal
Hum

jpeal

;m_;._
Moyl

a1AquJ
adAu
jeisp
aseq

S180

oguowLl
oguow
ajul
uoo|

B0B0OPO 2691

= 2000
= P000
= ¥000
= €000
= 9000
¥000

€200
= 6.00

=4q.00
= 6400
=8.00
=8.00

=cl8}
= 108}
=008}
= 608}
= 908}
= €084
= JoH
= 008}

= 3200
= €400

661
861
L6l
961
S61
v61
€61
c6l
161
061
681
881
181
981
£°1:18
81
€81
28l
181
08t
6L1
8.1
LLL
9/l
SLL
vil
1A
cll
LLL
0l1
691
891
191
991

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

158

09s)es l1ed 219epJ gp9| €ee

g 10joas Buipeas ueys: AR IAw 2090 6P9l (454

0 XO®'J} Yyum pejs: 34jes ed LL/epd 9p9l Lee

0°‘ IAW 0090 P9l oge

)Sp|as es LIPLPO P9l 6¢c

0 9ALIp WoOol} }00gq:! 0 IAw 0090 Jo91 8c¢c

Bwples ied 2199po 2991 lec

wialsAs XsIp JO 1Je}s O} Ssalppe ewp }os: quwdo ‘q x| 000010 6991 9¢e
S914}a4 10113 UO 348y JBJud: :0jo0gM gcc

q ysnd Go 8991 vec

sal4}a1 xew: Anai ‘o IAW B030 9291 1 X A4

: t444

%Oe}S 10} B|qe|IeAR niy} 08 snyl—ewp Buisn! ynq ‘ds IX| 0008LE €991 Lce
: 0ce

uels : 6l¢c

MelSs pjood 814q 82| e SI 848y} Buiwnsse—ysip wouy wydo peas ! gl
wJem J0j paddiys aq [|IM YoIym ‘| J0308s ‘Q 3Oeld} UO 19peOo| jJoogMm yAYS
: 9l¢

: Sle

wy/do o} ob: wdoob dwl L130€9 0991 vie

B)SIp 0} Ajjenul jas: ¥SIpo B}s 00v0ce PAaglt €le

10}e|NWNooe 1es|o! e BIX je oqg9l cke

abessaw junid: H6swuad e LLEPPO 6991 LS

uoubis ‘y 1X| 91961¢ 9991 oLe

yosg+yng ‘ds 1X] LO0OLE €Q91 602

(4e000 e 814qo! pazijelul J00q SpPW :8}0u) : 802

dod 03 o6 pue abessaw uoubis juiid: 11009 202

: 90¢

0} ap 00e0pPO0 0991 S0c

0,401 pow s1aA ‘', “,0,+01/SI8A ap ceogee pegt v0¢c

. SI9A w/do ¥, qap J20S€e¥0299 Legl €0¢

Jipua ¢0¢

lojeodojas Aq paj|iy azis Asowsw: .00, qp 0€0€ J691 102

1S9 J0U it 00¢

159

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

/1s1 pue (QjsJ a|qeus
(100q ue)S P|OD WO} 818y J3Ud)!
ssalppe 18§)NQg }NeJap 19sal ‘peO| aY} Yiim auop

o9sp. zul

;auop: q 10p

1UNOJ 10109S ||edal: q dod
09s)9s lleo

|1ed 10} Apeau ‘O AOW

10108s }xau 0y e Jui

Jaquinu 10}08s Jes|o!] BIX
¥upes |ed

|1eo oy Apeau! B‘DO AOW

] aul

e Ja1s1bal 0} yoeuy 106! 101 ep|
3orJ} }xau 0} 06 pue 018z ‘gg 410}03s aq jshw
LpJ of

£,10}09s ise| peal: 92 1do

peai isnl Jaquinu 10}09s:! o] ep|
BWPIOS ies

BWP }3S 0} ||e0 10} Apeal: 1O Aow
y‘q Aow

1Y Ul ssaippe BWp pajuawaloul’ p pep
az|s 10}09s! 82l ‘P 1|

SSaJppe Bwp juswalioul’ pol ply|
1N220 10448 j1I Aujau! 1181009 zul
peas Ies

JUNOJ 10}08S dAES! q ysnd

10}09S }Xau peau:

s}o8su ‘q IAw

JUNOJ 10449-0} ! q dod
0198Z 0} S}09SU JUNOI ‘S10}08S peal

:wdoob

Lp4

:00spJ

911822 20LI
S0 0.1

10 B0LL
219epd L0LL
v 90LL

o€ GO.L

je v0LL
L1L/epd LOLL
v 0041

o€ Hol
8legeg dj9|

L1S0®p 6491
eld) /491
8199eg i1
2199p2 1§91
PY 0J9L

bv 4991

61 9991
00081} q@9i
8109e¢ 8991
L16¥29 S89l
L119p2 ¢agl
GO |89l

0290 4P9L
10 ap9glL

99¢
S9¢
v9¢
€9¢
c9¢
19¢
09¢
6S¢
85¢
yA14
9G¢
G6¢
vSe
1314
414
162
0S¢
6ve
144
YA 44
144
Sve
e
gve
cve
Lve
ove
6€¢
8€¢
yA%4
9€¢
11514
yee

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

160

qudo duwl

19

ul 31 6o} 03 do2 0y puss: B ‘O AOW
Jaqwnu ysip pabboj jsey: 3SIPO ep|

wdo 0) Jojawesed pudas ‘q sem XysIp pajoajas Ajsnoiaasid
19s 814qO| aAes)|

jipus

L+8.Z PIys

oguow ‘y 1X|

(1pp Aq pabueyd aaey Aew) gguow o3 dwil: 8.l els
s8] jou 3

G uoyedo) je sopq dwl: 9 Plys
sopq ‘y IX|

S els

00 uoneosojejoogm dwnl: I Plys
ajoogm ‘y 1X|

0 els

dwl ‘e AW
sjuiod A1jua Jo)yiuow jasal

BWP}SS 1rea

4ng ‘q x|

Y08 O3 ssaippe Jayng jjnejap }8s
j041u09 1dniiajul’ uo9l no

-] BIX

ol no

uo SHQq /isJ pue Qisi! ajul ‘e 1AW
paJea|d! ojul o

e BIX

HAal Ino

PUBWIWOD dzZijel}iul’ ycl ‘e IAw

P

0000€° 9v L1
ai SvLi
Wwyvil
oovoee Lvli

0o6cee el
8J001¢ 9€.l
008¢ece 8ELL

0090¢c SE.l
8090L¢ ¢ELL
00S0¢e Jeit
0010ce d¢lt
91€0ic 62L1
0000ce 9¢.L

€99g P2l

21a4p2 tell
0008LO ®LLL

eiepP OLLL
jeqisi
olEP 6LLL
9/8g LILI
olep GLLL
jevili
pjep ciilL
cieg OLLL
€} J0LL

0o¢
66¢
86¢
L6¢
96¢
S6¢
v6¢
€6¢
c6e
L6¢
06¢
68¢
88¢
18¢
98¢
S8¢
v8¢
€8¢
421
I8¢
08¢
6.¢
8.¢
lle
9.2
S.¢
vie
€Le
cle
Wk4
0l¢c
69¢
89¢
19¢

161

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

o] dw(
(1189 spw se awes ay} Ajjoexa)
}NO 321AD 1SI|!

0o dul
}NO 9jOSUO0D O} O WO} J18}OBIBYD B|OSUOD!

181
g Ajued anowau! Uil ue
10 ed

e-6aJ 0] J910BIBYD B|OSUOD:

S1S0 dwil

(1180 spw se awes ay) A[joexa)
e-b6aJ 0} snieys ajosuod

0 ‘100q¢, ap

J0}lUOW aJempiey spul: oguows duwl
Hsw.d eo
Bswiooq ‘y IX|

saljal AuBW 00} 8SIMIBYI0

or00gm dwl

q ysnd

uiebe A1}

0481009 zl

2 10p

SJUNOo? ||edal: q dod

Ayl pueabessaw juud ‘palindd0 UOHRIPUOD 101U

8J40€0 P9LL

s
8160€0 B9/.1L

:1NOU0?
60 69.1
§199 /911
8JE0P2 Y9.L

:uluod
84CLEO0 L9LL

:1SU0d
¥.49)9¢94€ AS.LL

:Bswiooq
}40€0 8511
L1LEPPI GG/L
,19S1¢ ¢St

:048100q
9169€2 JvLl
GO 8/l
ligsed ayll
PO evLL
1O 6vLL

:118100q

‘

yee
€€
cee
Lee
oee
62¢
8ce
Lc€
9ce
T4
144
174
ece
Lece
0ce
61€
213
FARS
18
SiE
143>
gle
43
LLE
ole
60¢€
80¢
L0€
90¢
S0g
o€
€0€
c0e
Loe

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

162

uolouNj 3y} aAes! B‘q AOwW Ly 26LL 89¢€
‘@AlIples 19€

3Uueq Ul | 8ALIp S}09)9S:! q0000LL00 ‘B 1AW 0€9€ 0611 99¢
EYJEL z(12682 p8LL G9¢€

¢00 Y nsai: e el0 19 98/1 ¥9¢€

88 1e € ‘C ‘gL e | ‘0 sey spw: qi ue 1099 eg/| €9¢€
LL ‘0L ‘1O ‘00" o2‘ Aow 6. 68LL 41>

jueq aALIp 109|as 0} yueqp els 8199¢¢ 98/1 19€
€ ‘2 OAP 10} 0L Ol PUB | ‘0 ®ALIP 10} 00 00! qot ue c09® ¥8.1L 09¢
: 6S€

0000 = |y @Ae?): oul op €811 8G¢€
¢abie| oo} sysipu 1do 09} 18.L LG€

2‘e AOW 6. 0811 96¢

10448 J1 0000 u4nyaL’ 40000 ‘Y 1X| 0000Le PLLL GGe
0 J9)s16a1 Aq uanIb XsIp 108]9s! :3SPlasS ¥se

: £G¢€

FINELS dwl lLlegoelll st

0°‘ AW 0090 8..I LGE

938s Q0 oeJ} se jeau} ! osg

uollisod awoy 0} arow:! :awoy 6v€

: 8ve

o dwl 8J90€2 G//L Lve

(11eo spw se awes ayy Aj10exa) : ave

e-6aJ 0} uj J4s)oeIRYD JBpRAL: Japeal She

! 144

od dul 8J00€0 2LLL eve

(11eo spw se awes ay) A|31oexa) : cve

}no adiAep yound:! :yound (84

: ove

Apeal jou sAem|e: 181 69 LLLL 6€€

e BIX je 0.1 8€E

snje;s isi| uinyai: LEE

asisl| 9ee
: 1%

163

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

104 60 eq/i cov

| Ul Jaquinu 10}08Ss uinjai: Bl AOW jo964qLL 80)4
(o] Bls 8199¢2€ 99/1 (10}

B 0} Jaquinu 10}08s paje|sueu): w‘e Aow YA JAN 66¢€
ssalppe (10108s) ajeisuely: q pep 60 ¥ALlL 86€
|y 0} ssaippe a|qe} aje|suei) 6yox qe €q/1 16€
0Q Ul Jaquinu 10)29s uoisioaud a|gnop: 0°‘q IAw 0090 L9t 96¢
ap je a|qe} Buisn oq 10}08s aje|suely: G6E
:uel}o9s 6€

184 69 09.L €6€

o‘w Aow LLieLL 26¢€

sol ‘y x| 81q9lg de/llL L6€

0 AQ uaAIb Jaquinu J0}09s }8s! :098S)8S 06¢

: 68¢€

184 60 qe/| 88¢€

2w AOwW LLee/| 18€

101 'y x| glegie e/l 98¢

9 AQ uaalb ssaippe yoeJ) }os: anes G8e

. ¥8¢€

‘ €8¢

181 60 9e/lL 421

ssaippe a|qe) Japeay 3sip=|y: p pep 61 GeLl 18€
aseqdp ‘p 1X| 9lLECtL ceLl 08¢

oL, y pep 6¢ e/l 6.¢€

8. y pep 6¢ oell 8.¢

V. y pep 6¢ 6.1 L.€

A y pep 6¢ 9611 9.€

Jaquinu sip=|y: o'y 1AW 009¢ 0611 GlE

2° AOw 69 46.1 Vi€

qdoi ul }i aaes:! B‘W AOW LLe6Lll €L€

Jaquinu }SIp Mau Ul ysew: q BIO 09 6641 clE
Jaquinu ysip N0 YSew: qLLLLOOLL iue JO99 /6.1 LLE
w'‘e Aow 9. 96.1 0.€

uonouny} ol jor‘y 1X| 81891¢ €611 69¢€

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

164

6sund dwl

y xul

y dod

INOU0D les

B ‘DO AOW

Yy ysnd

wud 0} asow

3|

¢0492 e BIO
we Aow

0 0} | ‘y ye abessaw jund:!
sauljnoigns Ayjin

19S 10118 aAey Aewi: 18l
olem leo
uolduUNy d}IM 0] }3S! ounjlas eo

AUM D 1AW
uonouUN} BYIM YSIp:

e-6a4 u))as 10410 aaey Aew! 121
uolouNy peas wJiojiad: onlem o
ounjles ||eo

uolouNny peais oy 19s: jpeas ‘0 1AW

(19s ewp/oas aISIP Buiwnsse) piodas ySip }xau pea.:

184

pol piys
q‘y Aow
2°Y Aow

9 ‘q sbas Aq uanlb ssaippe ewp }as:

:91IM

:pea.

‘BWpPlosS

LIEPEO PPLL
€2 oPLL
e gp/L
L1e9pd 8pP.LL
W LPLL
S 9pli

89 GPLL
La ¥PLL
8L epPLl

69 ¢PLL
LIOPO OLL
L1038p2 2J/L
9090 Bd/|

69 69.1
L104P2 991
L109pP2 €911

030 9.1

69 09.1
8199¢¢ Pq.Ll
0999/t
69 aq./l

9evy
Sey
vey
eey
cey
LEY
ocy
6cy
8cy
ley
9cy
Secy
vev
1 %44
444
Ley
ocy
6Ly
5134
LIy
oy
Siy
viv
1434
cly
Ly
(V]84
60V
80y
L0V
90F
SOy
yov
X0 4

165

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Ol Yueq aAup 10} g8' UoL+moj! no

| jueq aALIp:

a19|dwod 10} }iem O} oyem dwil

ssaippe ybuy: ybyr o

g‘e Aow

19]|011U0D 0] SSaIPPE MO|: Moyl no

&L jueq aaup: Lipol zul

qdot 10} ssasppe ybiy: g Jys qdol ‘q IAW

gdol 40} ssaippe mo|: yjo pue gdoi ‘e 1w

€ ‘2 }l ZU pue | ‘0 8ALIP I 019Z! e BIO
sbey} yueq 1os: Nueqgp ep|

19]]043U02 8y} sJes|d! alAqui |1eo

adAu ui adAyui |1es

uoa|dwo9 10§ JIEM PUB UOI}OUN} O/1 8Y] UEBIS

J0119 wuad 810494 sali1a4 Xew: Anjal ‘0 IAw

ey

JJO/UO 1Iq 109|8S YsIp 18s! B‘W AOW
sueq ysip i1adoud 109|9s! w BIO

81Aq 108|8s 10}08s a8y} ssalppe! SOl ‘Y 1X|
}q 10818s ¥SIp ay} ysew: a000001L00 ue

uoIIoUNy O/1 JUBLIND BY} WOJ} G ay} dsew
91AQ 10}08S Ul }Iq Yueq XSIp salinbau 18]|043u0d QO8-SPW 8y}

qdoj uj paoejdai’ B ‘w

PUBWWOD MauU 0} }as: 2

puewwod snojaaud arowast qoooLLLLL
Bupysew 10} Joye|NWNIOE O }I 186! w'e
ssaJippe uotjouny ol jJo1 ‘y

Aow
el10
ue
Aow
x|

(0-6a4 Ul pueWIWOI) O/ IXBU 10} UOIIOUNJ }BS

68€P 4081
‘L4pol

8101€2 8081
Be.gp 9081
8. G081
6.€P €081
814022 0081
8190 9.1
199€ O4/1
FALRCFYA
8199¢e€ 8.1

819¥PI GiLL
814EP2 ciLl

Hemal

B090 0.1
:01}1BM

69 J9.1L
LL9d/L

9q pa/L
g8Lqgic ea/l
0299 83/|

Ll /371

19 g9/L
8J99 $9/1
9/ ed/lL
81891l¢ 091

:ounyjes

(VA4
69y
89¥y
L9V
99y
1°1¢) 4
Yoy
€9y
(414
19v
09y
65y
8y
LSy
9G¥
SGY
14°14
1514
414
LSy
oSy
6vy
15144
YA44
1144
Svy
14474
1944
444
8474
ovy
6ev
134
LEY

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

166

(018 ‘jaas ‘yjoeJ} ‘010) UOIIOUNJBW BJBMPIRY UIN}AL'
JunoosAn dwl

91Aq)Insa. Jes|o! 81Aqui |1eo

MOU 10} 10119 SB 1eal) ‘Apeal Jou!

181
0139Z SUIBlUOD JOJB|NWNIOE ‘YO SI 3}1JM IO pEad.

JoL9Mm zul

(%0 eyep pajs|ap) ¢(S40148 J8Yjo Aue: qQOLLLLEEL lue
Jel

ApeaJ jou jun: Apeaim of

|eJ

a)Aqui |1eo

S11q 10448 0/1 ¥98Y9o

A13aa ‘uoIIpUOD 18Y}0 BWOS:! 10119M zul
e BIO
Joye|nwinNooe 8y} ul 00 89 Isnw

Apeaim zl

¢{9bueyo snyejs Apea.: qot 1do

(pesn jou) 1 pabueys snjejs ysip ol

(pasn 1ou) 819|dwod 0/) paxyul} L0 ‘818|dwod 0/1 payuljun oo
paxyuljun (00) @18|dwod o1 aq jsnw adAyul Ieo
30 uona|dwod o1 ¥23yd

ojem zl
{Apeau! Apioi iue
uon}e|dwod 10} yem: 1eIsul |1es

yoL+ybyr no
q‘e AOw

104iom

:Apeaim

:olem

818€€0 GE8L
819¥P3 ce8l

69 LE8L

818€¢O 9c8l
9j99 o¢8l

}1 qcsi
8lceep 8¢8l
FARXA]S
819vPO ve8l

818€¢o 1e8l
19 028t

giceed pLgl
¢098} qi8l

814EPO 8181

8L0Led GI8l
099 €181
8L6GPO 0181

B8EP 9081
8. P0O8I

¥0S
€05
¢0S
L0S
00S
66V
86V
L6V
96V
S6v
ey
€6y
4314
L6v
o6v
68Y
88y
18Y
98y
1°1°14
1414
1914
a8y
18y
08y

6.y
::7A4
LLY
oLy
Sly
viy
1A 4
cLy
(VA4

167

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

104

€ ‘2 lo488 | ‘040)8.: yor+adAu ui
1l

adAu ui

0l jueq oy diys: 1dAywi zul

e BIO

jueqp ep|

01 10 00 ueq aAlIp peal Jejsul ‘a3Aquil ‘adAyul

Y]

8poJ 10113! L'e 1AW

10418 WOJ4) 1BA0J3I Jouued

A1} 1ayjoue 10} Hemal zul
o} 10p
0492 |1}, JUBWAIO8P ‘JUNOD A1j8J SUIRIUOD D Jd)siBau

juswanosdwi Jaje| 10} UOIIPUOD pajeledas B se pajeal)
S| UOIIPUOD Apeal Jou 3y} ‘ased Aue ul "a|qeiaA09al
jou s| 1l JI 9bessaw 10419 Juauewad e 186 |jIm am Inq
‘SUOI}IPUOD SNOLIBA 3y} INO J3}|1} O} |NJasNn aq Aew }i

(0 L 2€ ¥ S 9/ paiaqunu aie sjiq J0}e|nWNIdR)

Apeal jou—

(uonlounyjew asempiey) 1011 B}lUM—

(Apeas j0u se pajeas}) 198104d ayum—
(uonounjjeW d4EMpPIBY) MO|} JBPUN/IBAO BlEp—
(uonounjjew aiempiey) 10418 ssaippe—
10119 }99S—

10118 010—

(anoge o se paydasoe) ejep pajs|op—
1SUONIPUOI 3y} 0} Buipuodsallod 10}e|nWNJdJe 3y} JO
uonisod yoea ui }iq B pauinial sey 13)j0Iuod spul ay)

c—

OrQNMm<T WO O

1dAu

JUN02AI

‘

69 qy8l
684dpP 6v¥81
69 8¥81
6.9pP 9v81
816¥22 £v81
19 ¢v8i
8199¢eE JE8L

69 9¢8l
109¢ JO€81L

L124ed 6e81
PO 8¢8I

LES
9€S
SES
veS
€€5
ces
LES
0€es
6¢S
:14°]
12S
9¢s
Ges
yes
1574°)
[44°]
Les
0cs
616
81§
LIS
9IS
GIS
143
€Lg
cis
LIS
0is
605
805
L0S
905
S0S

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

168

Jjopua 045

uonesado sopq 10} seale we. aulep : 695

: 896

: 219G

ssaippe ol 3ng mp :pol 0008 2981 995

Jaquinu 10}09s! L ap SO\ L0 9981 G9S
Jaquinu)oeu)! 19s§40 qp ‘101 20 eggl ¥9S

peaJ 0} S10}99S }JO Jaquinu: 1 qp uol L0 6981 €96
peaJ jenjiul ‘uonouny oi: jpeal qp ;Jol ¥0 8981 2965
uofjesado oy jewusou! yos aqp 08 /981 196
300|q J9)9weled ol :qdot 09s

€ ‘28AP JI 0L ! 6GS
L ‘0 ®AUP J1 00 Yueq Xsip: 0 ap Hueqp 00 998! 8SS
(weu ul 8q isnw) sease eyep : /1SS

: 9GS

: GGS

: ¥SS

101 690 G981 €66

yoL+ieisp ur lpejsul 884p €981 css

EY| 69 ¢98lL LGS

yeisp ul 8.4P 0981 0SS

Lesul zul 81€£9¢2 PS8l 6vS

] BIO 19 0681 8¥S

3ueqgp ep| ‘Jejsul 8199eg 6581 LS

! 11 4°]

184 60 8581 S¥S

yoL+a1Aqs ur 4qul qgap 9581 144°]

EY) 69 GG81 1341

a1Aqu ul q.qp €581 [44°]

L1Aqui zul 819529 0581 (84°]

e BIO 19 8l ovs

jueqp ep| @Aqul 8199€€ o181 6€S
: 8€S

169

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

96¢
99§ 8.¢ Lee

981 S8l €81 cs8l

yepbag-¢
$

9l

e

]

Le

9l

Le

9l

e
Jajynq ssaooe Au0}o8UIp! |21

$

oee #vll
1A #ell
€ic #€€
60¢ #€
#9lL€ cle
#20¢€ Lve
#0lL€ 1410}
#.0¢ €9
#cc #61
c8s #11S
182 #6¢
181 #081
#6.S 66
#..S G6
#5.S 16
#E.9 18
#1G1
#9v 1
#ivl
pua
nba zi1s]ep
nba jeppus
sp IEASD
sp ‘EAe
sp :2ASD
sp ‘ZAe
sp ILASD
sp ILAje
sp :0ASD
sp ‘0Ale
Sp 4nqup
nba jepbaq

608}

€08}
000
0800
qs/i
6Ll
4743
€491
0000
298|
9080
8200
a6l
o6l
PL6L
298|
jLoo
}Loo
}100

eegl
=+0¢€10
=+Begpl
+B661
+4.61
+q961
+361
+0g61
+PL61
+P061i
+998|
+908|
H+®®Q—.

09
19

3SIpo
Hnq
B6swiooq
1193009
048100q
100q
seiq
yepbaq
sopq
aseq
gAle
AR
LAlR
OAle
gse
Zsie
Lsje

€85
28S
18S
08S
6.5
8.G
L1S
9.§
S.S
V.S
€15
clS
LLS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

170

#8GS

cly

¢SS

0G1 Svi ovi
#¢.S 86 ¥6
LYS 6€S LES

S0¢

66¢ 9¢¢ oe

cey

99y

Sle
#6vE
#59¢

91

0SS

08¢
#0G1
#Sv1
#Oovi
#101

06

6Sv

#08S
#8.G
#9.G
#v.S

44

961

I

6¢
#0c€
#6¢¢€
#vce

#981
#991
LL
vie
#G1
#189
#181
#96
#¢6
#88
#¥8
#€8
86
v6
06
98
98
19€
#2869

56
16
.8
#LLL
#¢Sl1
#.v1
#evl
#c61
#0€
#8¢
59
L9
99

e.00
€400
8.L1
JoLL
0000
ee6l
8200
€991
€591
€v9L
€e9l
€e9l
€.91
€91
€91
€.91
2981
998!
o€10
e661
q96!
€61
PO61
4%}
0100
0100
0100
P000
0091
0000
19L1
B9/L
voLlL

uby
uool
awoy
wdoob
as|e}
yeppua
1eisp
gadp
Zedp
1adp
oedp
aseqdp
€qdp
2qdp
1qdp
oqdp
snquip
yueqp
zisjep
EASD
gASO
LASO
OASO
S1S0
€SS90
2Sso
LSSO

10
jwdo
qudo
JSuod
1NouU0d
uluoo

171

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

#59G

SeEY

S0¢

VA 44

#6€S

¢9S

#0Ly

144°]

#Scy

8¢
¥9S

961
#Y9S
ooy
#09S
#29S
#9996
#1€S
€L8

L0S

(1724

487
#GVE
ove
414
#.G¢
(44
#ive
€1e
£ve
L2
0oL
L€¢
L6¢
vee
#9€¢€
#2£¢€
961
98¢
L6€
Sly
4s14

6eY
#69Y
L0V
6.V
#9€S
¢l
1.2
#LYS
#29S
06¥
#vvS
Yoy

#881
0.
9.

#8€¢
0S¢

#€81
69
Lie

#S/.1

#9¢

#¢

#1€

#0L1

#9/1
8.
89

#E61
(414
8ve

#161
8e)4

#€9S
69¢€
€9y
cve
9GY
€€9

#/.91

#991
/A%
6vS
LSy
84°]

#S81

¥000
SLL1
1oL
1991
SOLL
q.00
cLLL
epLL
208}
0091
€000
9200
008}

08}
0LLL
P9l
2000
eogl
q98l
¥000
L1981
6981
8981
qosi
o98|
jest
6v81
9,00
9400
6681
€981
41
9G81
6,00

jpeal
J19peal
peal
oasp.
Lpd4
a)Aqu
yound
BHswud
od
yoyed
18s}j0
SLENT
oguow
oj
188y
1s!|

3

jo!
o]}
Ap.oi
qdol
uol

jol
Lipol
po!
adAyul
LdAu
ajul
Ul
jejsul
Leisut
a)Aqul
LAqul
moj!

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

172

68¢

€61 14 124"

#00S
#90S

#2Sy
9Ly
¥0c

00¢ .61 (¥4
#58¢€ 413 SGe
#06€ 6G¢
#.8v

#Y0oy 6.2 Lve
#YGE

9ES

%14

#ES1
#8vi
#eEVL
#clt
8Ly
#LLy
4314
Sé6v
v8¢
80¢
#.1¢
ocy
#vly
¥0¢
#12G
St
81
Oic
Lee
12514
6Ly
#.9¢
yX44
62¢
#v6¢€
yeS
143
VA4
yes
69¢
1 X144

96
c6
88
¥8
#681
1L
€8y
A 14
#v9
#92¢
¥9
1484
L9Y
#9
c0s
#vl
#91
#S61
€L
v.
1484
S9¢€
S.
el
6.
#c8!
#1LLL
#ELL
#vSy
#¥91
#S€
#061

289l
2891
2891
891
9000
BO/1
cesl
8€81
€091
6991
€991
(VYAR
oist
9100
8e8!l

HH
0000
2691
JA-FAS
e/l
09L1
c6LlL
qqlt
PLLL
1qlt
6200
joH
908}
(A VAN
P00
B000
€000

eHx
cux
LUX
oux
UM
81UM
Apeaim
10119M
ajoogm
oioogm
jooqm
onlem
ojem
SJOA
WunooAn
ans
}s9)
uoubis
Napes
09s)9s
ounjias
9AlIP)OS
BWP}aS
Jysp|es
uBlI}O8S
adAu
oguouu
7]
yemal
A3l
Anal
|eoal

173

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

uonisod swoy 0} peay aaow: awoy dwl
1IN0 J9)oeIBYD JBpEaI: Jepeas duwl

N0 J8yoRIBYD Yyound: yound duwl

1o Ji3)0BIRYD }SI|! 181 dwf

}NO J8joeIRYD B|0SUOD! 1nouod dwil

u| 18}oBIBYD B|OSUOD! uiuods duwf

snjejs 9|osuo9: 1suod dwl

MBS WIBM! joogm duwl

uels p|oo: 100 duwf

SaulIN0IgNs [eNpPIAIPUI 10} J10}08A dwin|

JUNOd J0}08s Lels wiem! ggl/(doo-$) nba

weiboud siyy jo uibuo: soiq 610
8)Aq o/1 jayut! uyeooo nbe
‘- ‘e=Q Jaquinu XSIp Juaiino! up000 nbe

s0Iq jJo aseq: ypo9iL+doo nba
sopq jO aseq: yg08+doo nba
doo jo aseq: seiq+yooye nbe
¥201.(02-0zIsw) nba

(1xa1 ays inoybnosys ,,q,, Se 0} palidjel) xgL uey)

SwalsAs Auowaw 40} YOOpE WOJ) 189S0 Ssalppe si ,selq,,

s9}Ago}I) ul 9zis Aulowaw uoisiaA w/do: (014 nba

uoneud)e 0’z w/do JO [9A8] 1S1l) 10§ SOIQD |B13|9YS

SOIdD [eI9S V g Xipuaddy

:8100qM

.
.

S109su

a1Aqol
3sipo
solq
sopq
doo
selq

ayysed 8Ley
avived GLey
arpPyed cley
av6ved 0By
ar.eed d0ey
avyeed 608y
avi1ed 90ey
eyoeEd goey
BHI6E0 00BY

= 9200
ooey

= €000
= ¥000
= 00y
= 90°¢
= 00vE
= 0000

=$100

TOON®O NMT WO~
TNRI2CER2RINAILER

v—N(')ﬁ'l-OCDI\wOe

175

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

10}08A 9je|suel] 10108s

€0l ‘EONYD MPp

Nqdp)qip - mp

4oooo0 ‘Y0000 Mp

yoooo ‘sues} Mp

€0 XYSIp 10} Japeay Jajoweued ysip
20Ile '20dUYd Mmp

%1qdp ‘4q41p Mmp

yoooo ‘U0000 Mp

4yoooo ‘suesy mp

20 XSIp 10} Jopeay J9)awe.ed xsip
LOllE ‘LO¥YD Mmp

Aqdp ‘)qip - mp

uoooo ‘Y0000 Mp

Uoooo ‘sues} Mp

LO XSIp 10} Jopeay Ja)oweled ysip
00ile ‘00dUD Mp

Xqdp ‘4q41p Mp

4oo0o0 ‘U0000 Mp

yoooo ‘suesy mp

00 XSIp 40} 18peay Jajyowesed ysip
s)ysip ,,8 8|qiedwod-wq|

piepue)s 8ALIP-INO} 10} S3|qe) elep paxis

aje|suel} 10}09S:! uespoas dwl
snjels 1sl| uinjal’ 18181| dwl
3SIP 8}IM! ajuM dwil

3SIp peau! peal dwf

SSalppe ewp }9s: Bwplos dwl
Jaquinu 10}08s }as! oasyes dul
Jaquinu)oeu) 1as: Nines dwl
%sIp 109|9s! ¥Splos dwl

PyPOaLOL jgEY
BpP8OYO) OBy
00000000 Z9EY
0000BVEL E9EY

Pyoea1o0 jGBY
BypP8IY0} aGey
00000000 LGBy
0000eYE.L EGBY

P¥i8PYO} ivedy
ByP8OYO; avey
00000000 Lvey
0000eYE. EVEY

P¥0.PVO9 jgeYy
BeypgOy 0} acety
00000000 LEey
0000eyE.L €cey

dv/egd ogey
avayed pcey
avy9pPEd ecey
qyeoEd Lcey
avpPegd pey
ay26ed Lcey
avp.Leo oLy
qyeged qLey

09
6S
8G
LS
96
SS
12°]
€5
4]
LS
0S
6v
14
Ly
14
Sy

1514
cv
84
oy
6€
8¢
A
o9t
S€
ve
€€
ce
L
oe
6¢
8¢

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

176

00 YoeJ} 01 0b: awoy |les

Xsplos Ied
0 YSIp }09|8s! 0 INW
¥O®e1S 10} 494N MO|aq aoeds asn: yog ‘ds 1X|

papeo| S10}08s |[€ |11UN %SIp 8y} peaJ o} s| ased }sojdwis!

wy/do o3 ob pue azjjeniul: wdoob dwl
013z %SIp 109|as: NSIPO els

8)}Aqoi ay} Jes)|o! a1Aqo1 els

wnooe ay} ul 04az! B BIX

uolnezijenul J9jowesed waopad snl 0} si1 aseo issjdulis:
uolouny yoes waopad 03 saullnoigns [enplAipul

sa|qe} paxl) JO pus

19S}40 Yoe4}! 2 Mp

az|s 3o8yo! 9l Mp

L d0jje: 0 ap

0 d0j|e: c6l ap

xew AJ0}oa.ip! €9 Mp
L-8ZIs ¥sIp: eve Mp

%sew [nu: 0 ap

%sew »200|q: L ap
10308} Ylys »%00|q: € ap
yoed4} iad si0}098s! 92 Mp

SYSIP |8 O} UOWWOD ‘}20|q J8}8weled %sip:

92 ‘Gg s40198s:! 2c ‘91 ap
¥C ‘€C ‘¢¢ ‘Lg si0109s! 0L ‘v ‘e ‘8l ap
02 ‘61 ‘8L ‘LI s40109s! 2L ‘9 ‘9¢ ‘02 ap
91 ‘GL ‘vL ‘€l s1o0es: pL ‘8 2 I2 ap

CLLL ‘0L ‘6s10108s: Gl ‘6 ‘E ‘EC ap
8 ‘L ‘9 ‘G si0)09s: /L ‘Ll ‘G ‘Ge ap
¥ ‘€ ‘T ‘L s10109s! 6L ELL°L ap

ayyspo seey
ayegpo qeey

0090 6EBY
00081L€ 9eBY

:J0ogM

epjoco geey
00t0ce Oeey
00€0¢ct P6EY

je o6eY

0020 e6ey
0001 86y

00 /6eY

02 96&Y

00i€ v6eY

002} 268

00 L6BY

10 06ef

€0 Jgey

ooel pgey

jjqdp

9101 98ey

BOv08LCl /8y

0090ELV| €8V

9080c0G| }.ey

J060€0.1L /e

1190S061 L.ey

sueqy €1P0L010 €8y

¥6
€6
c6
16
06
68
88
18
98
°1°]
¥8
€8
c8
18
08
6.
8.
LL
9.
S.
v
€L
A
LL
0L
69
89
L9
99
59

€9
29
19

177

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

P aul
abueyo »oelJ} 10} %08YD ‘pPEO| 0} UIBWSI S10}09S dI0W

papeo| uaaq aAey |je Ji wydo 0} 1ajsuel}: wdoob z(
|-S10}098=510]09S! q 19p

341 Jua.und pue ‘Bujuiewal s10}99s JO JaqUINU |[BOBL: q dod
SSaippe 10}08S ||Bedal: p dod

| ‘Y Ul S| SSaIppe BWP MaU! P pep

g8cl+ewp=ewp: 8cL ‘P 1X|

SSaIppe BWP ||BJd.! y dod

10}08S 1Xau 0} aAow ‘10148 OuU

$1N220 10113 Ue }I }00q al11jud ay} Anau: 100gm zuf
¢,S40149 Aue! uoo 1do
peal 1es

189S SsSaippe ewp ‘189S 10}09S ‘18S YOrJ] ‘0 O} 18S BALP

0 ‘q wou} ssaippe ewp 19s! ewplas ieo

||eda. iaje| 10} }oe)s uo aoejdai: q ysnd

2 ‘q 0} ssauppe ewp ||edal! q dod

0 Jis)s1bas wouy SSaIppe 10}09S 198! 09s)9s ileo
9 J19)s1681 0} ssaippe 10}09s 196! p‘o Aow
SS9IppE BWP dAES! y uysnd

peaJ O} J0}08S }XdU IAES! p ysnd

3OBJ] JUBLIND UNOD 10}03S SAEBS! q ysnd
10108s aiow duo peoy:

(wuiod peoj [enul) wydo jo aseq: doo ‘y IX|

1els wiem e uj paddiys si yoiym 1apeoj Lels pjod sy} Sulejuod
| 10}08S @ouls g 103098s ‘0 yoedy buipeas Aq uibaq am jey) ajou
peal 0}.10}93S }1xau ay} sey p: rAN ¢ INW

Jaquinu)oeJ} Jualind ayj sey 9! 0 IAw

peO| 0}S10}09SJO #SUNODQ: S}08SU ‘qQ Iaw

Vi 6PeY

epjoed gpey
S0 SPey
10 ppey
LP gpey
61 gpep

0008LL JoeY
L@ aoey

epygezo qoey
003} 698y
qyeopPI goey

aypepo goey
o Zoey
10 Loep
aveepd aqey
ey pgey
Go ogey
P qqey
0 eqey

‘1PEO|

¥€001¢c Lqey

c091 sqey
0090 €qedy
9290 Lqey

lcl
9cl
el
el
€cl
ccl
¥43
oct
6L1
8Li
LLL
it
SiL
149
gLl
cli
LEL
oLt
601
801
01
901
SOl
volL
€0l
col
101
00]8
66

86

L6

96

S6

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

178

wa)sAs 1dnuialul ay} a|qeus’ 19

BWPIOS i1es
yog S! ssaippe ewp jnejep: yos ‘q 1X|

sopq 01 G 1e dwnl jo p|ay ssaippe: 9 PluUs
wiod Anue sopq: sopq ‘Y IX}

sopq 0} dwl Joj S els

0 1e dwl Jo} pjay ssaippe }os! L Plys
wiod Asjus joogm: ajoogm ‘y x|

100gm o} dwl 104! 0 BlS

uononssul dwl e sy go! yeoo ‘e 1AW

w/do 01 ob pue sisyowe.ed }as ‘uonesado peoj jo pud

10}08s Jayjoue 10! Lpeoj| dw(

q dod

p dod

y dod

0 J9)s1681 WO} }8S Ssalppe yoesy! FINEL es
Yy ysnd

p ysnd

q ysnd

s)oeu} abueyd pue ‘ajels 1a1si1bas aaes

L+)OBJ}=)OR4}! b} Jul

3OBI] 1X8U JO 10}93s 1S4} yum uibaq: L ‘P 1AW

yorJ] 1xau 0} 06 ‘3oeJ} JUBLIND JO PUd

12>10109s §| pajesauab Aieo! Lpeo| of
Le do
syoed} abueyo ‘os §l ‘¢ 2g=10108s! p‘e Aow

:wdoob

a4 609Y

qvypepo 904y
000810 €09y

00902¢ 009ty
0€901¢ Piey
0050c¢ eiey

00L0ce Liey
epe0Le viey
0000cE Hey

€09¢ joey

epeqeo J9ey
1O gq8ey
Lp eaey
L® 6oey
aypLpo geey
Goe goey
SP voey
GO goey

90 coey
1091 09EYy

eyeqep ppey
ale} qpey
B/ BpRY

09l
651

8G1l
LS1

9G1
SGl
141
€6l
cslt
LGL
0Gl1
6vi
2148
yA4"
14
148
vyl
eyl
cri
843
ovi
6El
8€1
LE1
oEl
Sel
vel
gel
cel
el
o€l

6ct
8¢t

179

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0 J9)sibas wouy J9yoeseyO yound: :yosund €61

. 6l

lod 690 21¥ap L6l

uJnjal 0} YO sAem|e si O e BIX je ayay 061
(Apeau J1 | ‘Apeau jou §I 0) sniejs isi| uinjau: 1818l 681

: 881

aunnougns |nu: 1ol 62 YAt /81

e 19)s1bas 0} 1910BIRYD!: 2‘e Aow 6. 6¥4p 981

0 J8ysibal wouy J9yoeIRYD }SI)! a8y g8l

: 81

1o4 6° 8¥av €8l

auinoJs jndino 1o aoeds! uot sp 8cay 28t
Jojejnwnooe o} }ab! 2 Aow 6. /€AY 181

9 J191s1684 wouy 1ndino 19}0BIBYD B|OSUOD! }NOUOD 081

: 6.1

181 69 9€dv 8.1

Hq Ajued dugs! ujL lue 1,99 vEap LLL

aunnou indui 4o} soeds:! uot sp yeay 9/l

e 19181684 OjuUl J18}0BIBRYD B|OSUO0D! :uluod Gl

: 172}

184 69 €2av €Ll

yoo ‘e AW 009¢ Leay clLi

aullnoigns snjejs 10} aoeds! yot sp (el LLL
JOU J1 YOO ‘Apeal Jajoeieyod I YjQ uinjdi ‘snjeis a|osuoo: ‘}Suod 0lL
: 691

9p09 UMO JNOA Hdsul 0} ! 891

paAiasal adeds yum ‘papiaoud st juiod Aijus ay) ‘esed yoes ui : 191
(4osn Aq ui pajjiy g 1snw) sia|puey o/t ajdwis : 991

: S9l

: P9l

Buissaooud sayuny 10} wydo o) ob: doo dwl £00£2 20ay €91
doo ay} 0y puss! B‘O AOW W POAYy 291

Jaquinu sIp jua.no }ab: 3SIP2 ep| 0ovoeg e0qay [Ke]

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

180

C. y pep

049z 19pJo ybiy: o'y AW

€ ‘2L ‘0J49qunu ysip=|: el AOw
ouxsip epj|

ssaippe Japeay Ja)aweled ysip sadoud ayndwood
109)9s YSIp 10} @deds! oL sp
abueu uadoud ayy uil st Jaquinu ysip

TGy j Aued ou! oui

€ pue(QUBaM}aQ aq Isnwi T 1do
ouysip Bl}s

o'e Aow

8p0o uinj}as 104! yoooo ‘y 1X|

0 19181601 AQ uaAIb ¥sip 199}0s!

8}1lUM/peal 1Sil} UO Q0 O} BA0OW [[IM BM!: EY)
ines ned
0)oeJ} 108]9s! 0 AW

00 1919Wwelsed UM ||BD 34118S B O}Ul ||BD SIY} dje|suel}
9ALP 1U81IND Jo uonisod QO ¥Oe4} dY} 0} dAOW!

SauIIN0IgNS 3}lUM puUB peal ay} ul
asn 1oy Aeme siayaweled ay) 8101s A|dWIS ||IM 8M ‘MOU 10}
MO||O} XSIP 3Y) 10} SI8ALIP O/!

101
1q Ayued dugs 03 Jsquiswial! ujl ue
(491e] 90B|da1) MOU 10} 3|1} JO pUd IBYUd! yey ‘e IAW
8dIABp iopesas wouy e 13)sibas ojul 1810BIRYD pRal!

aunnoigns |jnu: 101
e J9)s16a1 0y J18)0RIBYD! o'?2 Aow

6¢ v.a¥y
009¢ c/a¥y
19 L9y
opjeeg 9gqy

145514

op €9av
¥03} L9ay
opioze 9say
6. PSA¥y
0000L¢ eSA¥

ysples

69 659
avyP /PO 95a¥
0090 ¥Sa¥

6° €5a¥
$/99 LSav
e19g 1Ay

:lapeal

6° 91ay
6. P¥ay

92¢¢
Sce
vae
€ec
444
Lee
0ce
6l¢c
::1%4
Lic
1%
Sie
14%4
14%4
cle
Lie
ote
602
80¢
L0¢
90¢
S0¢
v0e
€0¢
coe
Loc
00¢
661
861

161
961

S61
v61

181

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ssaippe ewp ay} buijies 1oy aoeds:! uol sp
ssaippe ay)] aAes! peewp plys

ssaJlppe 43pio ybiy: q‘y Aow

ssaippe 1api0 Mo|: 2 Aow

2 pue q si9isibas Aq uaaIb ssaippe ewp }9s:

1U Ul 8NjeA YM! }ou
(10308s)suey} = |y o 1AW
(10y109s)suey) = | w'‘ Aow
(10109s)sueiy =|y: q pep
sueJy'=|y: 6yox

ap Aq uaalb a|qe) aje|suely:
ayy Buisn oq Aq uaaib 10}08s sy} aje|suesy:

121

109}9s 10}28s 10} aoeds! uolt sp
10}00s els

o‘e Aow

0 Jo)sibas AQ uanib 10}08s jos!

104

108|9s)oeJ} 10} aoeds:! uot sp
3oeu} Bls

o' Aow

0 J9)s1bas Aq uaalb yoey))os!

pt=J]

(9L ,0uxsip)aseqdp=|y: 0 pep
aseqdp ‘p 1X|

(19peBy yoes o azis) 91,! y pep
8. U pep

| y pep

caqay
oypage jeqy
09 seqy

69 pPeqy

‘Bwples

69 OeqQYy
009¢ eeqy
99 gedy
60 geqay
a8 /eqy

:ue4)09s

69 gedy
96qt
opqeze €6ay
6. 269y
:09s)9s
6° L6ay
Leavy
oy69¢cE 9.4y
6. P.ay
INER

69 0/9¥
61 9.9y
epeell 8.4y
6¢ L.9¥
6¢ 9.9y
6¢ S/av

6G¢
8G¢
1S¢
9G¢
GGe
¥Se
€Ge
cse
162
0S¢
6ve
144
Lve
144
Sve
444
e€ve
eve
Lve
ove
6€¢
8¢€¢
yAY4
9ee
21514
yee
€ee
cee
LEC
oee
6¢cc
8¢c¢
lae

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

182

ssaippe Auowaw }0841p! Z sp
uoisuedxa 10} $9}AQ OM}! 2 sp
uoisuedxa 10} $9}AQ OM}! 2 sp

‘(.yeppus,, pue ,jepbaq, usamiaq ‘1onemoy
‘a|ge|leAe aq jsnw aoeds ay}) abew) Auowaw walsAs
8y} Jo ued e 8g 0} paau Jou Saop pue ‘eale ejep
pazijeljiuiun paA1asal si sOIQO ayy JO Japulewal ay)

ul -pa||lj uaym paoe|dai’ EY
uol}Ipuod 10449 1 ‘e 1AW
SI8ALIp O/I 10} paAIasal aoeds! 9G¢ sp

(5£559-0) .pERWP, Ul SSBIPPE BWP 8Y)
(92-1) ,40308s, Ul JBQWINU 10}08S BY)
(92-0) Moe4}, Ul JBqWINU %O} BY)

(L ‘0) ,oudsIp, Ul Jaquinu %SIP 8y} PAABS SABY aM ‘ased Siy] Ul

ajlum 10 peal 8y} Buunp sind20 108 UB J1 Y10 pue ‘Ajadoud

sajo|dwoo uonesado ayy ji e saysibas ul Yoo e uINdl “uonesado
0/1 |en}oe 8y} wJoiad 0} 8}lJM puB peal Wolj a1ay Jajua:

puBWWO ajum dn }os! uol sp
uonesado ajum e wioyad:

0/1 |enjoe ayj} wJiopad oy ontem duwl

puewwWwOoD peas dn }as! yot sp

(8}um Ul P02 UOWWOD

asn uay)} ‘puewwod peas dn 1as 0} adeds MO||B ||IM dM OS
a1uMm 0} Jejiwis sI sIyy Ajjensn) uonesado peas wiopad:

1ol

:01jieM

UM

i

:peal

pady
q8dy
6997

60 899y
L09E 990y
99qy

oPay

qy99€0 gpay
£9qy

69 2oqy

062
68¢
88¢
18¢
98¢
G8¢

y8¢
€8¢
414
182
08¢
6.¢
8.¢
Lle

9.8
Sl¢
vie
€le
cle
LLe
0.¢
69¢
89¢
19¢
99¢
59¢
v9¢
€9¢
(414
19¢
09¢

183

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

191
€91 (]8 9l L

eale ejep Jo azis! ‘jepbag-¢

BAJE BIBP JO PUS! ¢

€ 10}09A %08Y9! 9l

Z 10}09A %08Yy2: 9l

| 10}08A 308Yo! 9l

0 10}99A }08Yd! 9l

€ 10}08A uoljedoj|e: Le

Z 10}089A uoneoO|jE: L€

| JO}08A UOleO0|E! L€

0 10109 uonEOO||B! L
BaJE A10)0811p YOjRIOS! 82l
eaie elep jo buluuibaq: $

#€0E
#20¢€
#10€
#00€
.8
oL
#v8
St

90¢€
12°]
#66¢
#86¢
#.6¢
#96¢

pus
nba

8G
€S
8y
194
#cl
#6
61
#L1
#8
#v6¢
#01
8G
€S
8y
1594

zi1S1ep

nba 1eppus

asn sopq 10} eaJe wel yojelos

G1-0 48quinu ysip: 3

‘€0AUd

sp
sp 20jyo
Sp LOMYd
sp 00%Yyo
sp €0le
sp 2ole
sp Lole
sp -00le
sp 4qaip
nba jepbaq
sp ouysip

olap
o09Y
oipy
o9py
000
oove
ogey
ooey
0000
(01200 4
90°¢
popYy
sepy
i8PY
(0)1% 4

o¢gey
=9¢10
ocoay

d18¥
009y
Py
Jo9pp
pPopy
oepy
18Py
0.P¥
0y
= 0PV

04

50 Bfe]
coiyd
LOMYO
00%Yo
3S1po
doo
jo0q
Elele
selq
1epbaq
sopq
gole
coiie
Lole
ooiie

L0€
90€
S0€
y0€
€0€
co¢e
L0€
ooe
66¢
86¢
L6¢
96¢
S6¢
y6¢
€6¢
414
16¢

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

184

St

#19 SS 0§
#¥€¢ Lie

#0ve

#6G6¢ 861
#vic

#29¢

144’

#80¢
#LV1

#69 LS 4]

#16¢
#56¢ LS 4]

#89¢
0Gl1
#06
#1.2
514
#88¢
ovi
201
oLt
€6
#9v¢
#68¢
#861
€Ll
#EGL
96

oel
#681
#581
98
v6
£’

VA4
0ee
#06¢
1544
VA4

#0L1
#081
#SL1

€e
#0¢
0c
99¢
oy
9g¢
6¢
oe
I
8¢
Se
444
9¢
4
S¢
#91
#€
#c0l
ye
144
#E1
e
88
#50€
144
#0v
8G¢
Lie
44
#90€
Le
€¢
44

9pPay
€0ey
9eey
99qy
1AC) 4
6991
P.ay
c6ay
peqy
egqy
FA-S)4
qaoy
way
€99y
Pvay
9200
100
eqey
avay
6vay
€000
14°517
joeyp
ocoy
pgey
1324
pady
FER] 4
040y
o€10
Liay
Leqy
veay

allum
ajoogm
100gM
oijlem
sueJ}
yoes

P PR
PEISET
BWP}OS
Asples
uelJ}O8S
10}08s
Japeal
peal
yound
s}08su
azisw
LPEO|
1818y
18
a1Aqoi
awoy
wdoob
}eppus
Niadp
aseqdp
peewp
ouysip
1Q41p
zisyep
JSU0D
}INouU0d
uliuod

185

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix C: A Skeletal GETSYS/PUTSYS Program

0100

0014 =

0000 =
3400 =
3c00 =
4a00 =

0100 318033
0103 218033
0106 0600

; combined getsys and putsys programs from
; Sec 6.4
; Start the programs at the base of the TPA

org 0100h
msize equ 20 ; size of cp/m in Kbytes

; “bias” is the amount to add to addresses for > 20k
; (referred to as “b” throughout the text)

bias equ (msize-20)*1024
ccp equ 3400h+bias
bdos equ ccp+0800h
bios equ ccp+1600h

; getsys programs tracks 0 and 1 to memory at

; 3880h + bias

; register usage

; a (scratch register)

; b track count (0...76)

; c sector count (1...26)

; de (scratch register pair)
; h,l load address

; sp set to track address
gstart: ; start of getsys

IXi sp,ccp-0080h ; convenient place

IXi h,ccp-0080h ; set initial load

mvi b,0 ; start with track
rd$trk: ; read next track

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 187

0108 0e01

010a cd0003
010d 118000
0110 19
0111 Oc
011279
0113 felb
0115 da0a01

0118 04
0119 78
011a fe02
011¢c da0801

011f fb
0120 76

0200

0200 318033
0203 218033
0206 0600

0208 0e01

020a cd0004
020d 118000
0210 19
0211 Oc
0212 79
0213 felb
0215 da0a02

0218 04
0219 78
021a fe02
021c da0802

02If fb
0220 76

188

mvi c,1
rd$sec:

call read$sec
Ixi d,128
dad d

inr ¢

mov a,c

cpi 27

jc rdsec

; each track start

; get the next sector

; offset by one sector
; (hl1=h1+128)

; next sector

; fetch sector number
; and see if last

; <, do one more

; arrive here at end of track, move to next track

inr b
mov a,b
cpi 2
jc rd$trk

; track = track+1
; check for last
;track =2 ?

; <, do another

; arrive here at end of load, halt for lack of anything

; better

ei
hit

; putsys program, places memory image

; starting at

; 3880h + bias back to tracks 0 and 1
; start this program at the next page boundary
org ($+0100h) and 0ff00h

put$sys:

Ixi sp,ccp-0080h
Ixi h,ccp-0080h

mvi b,0
wrtrk:

mvi c,1
wr$sec:

call write$sec

Ixi d,128
dad d

inr ¢

mov a,c

cpi 27

jc wr$sec

; convenient place
; start of dump
; start with track

; start with sector

; write one sector

; length of each

; <hl>=<hI> + 128
; <c>=<c> + 1

; see if

; past end of track
; no, do another

; arrive here at end of track, move to next track

inr b

mov a,b
cpi 2

jc wr$trk

; track = track+1
; see if

; last track

; no, do another

; done with putsys, halt for lack of anything

; better

ei
hit

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0300

0300 c5
0301 e5
0302

0342 el
0343 cl
0344 c9

0400

0400 c5
0401 e5
0402

0442 el

0443 cl
0444 c9

0445

; user supplied subroutines for sector read and write
; move to next page boundary

org ($+0100h) and 0ff00Oh

read$sec:
; read the next sector
; track in ,
; sector in <c>
; dmaaddr in <hI>
pushb
pushh
; user defined read operation goes here
ds 64
pop h
pop b
ret

org ($+0100h) and 0ffOGh ;another page
»boundary

write$sec:
; same parameters as read$sec

pushb
pushh

; user defined write operation goes here
ds 64

pop h
pop b
ret
; end of getsys/putsys program

end

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 189

| 3OBJ} UO S10}08S JO Jaquinu’

0sopg-ssopq

0 YorJ) UO SJ0}OdS sOpq JO Jaqwinu G2
SOp Ul S10}09S }O 18aquinu: gzL/Isopq

peas 0} s)oe4] JO Jaquinu: 4
qudo-asopq

HO00€ 1e 1009 o..m??mc WwoJj UMOp papeoy: 4000€0
jutod Asjua uels wiem: £+100q

wiod Ajus peys pjoo: seiq+yoogl

peO| SOp }JO pus:! selg+yosst

s||ed 10} sop 0} Anua! selq+ygos

peo| sop jo aseq: selq

40000

HBunsay jou

yooreo

Bunisey

sJo448 uo gguow 0} o6 uay} ‘anuy Ji as|e}
as|e} jou

0

nba
nba
nba
nba
nba

Bio

nba
nba
nba
nba
nba
jipus
nbas
3
jlpus
nba
#

nbe
nba
nba

6261 ‘isnbne Q'g uoisian

0'2 wy/do 10} JOpeO| 1elS P|0d 008-SPW

.4000€ 1e J9peo| Jejs pjod spw

7 W/dD 10§ J19peoT uels pjod 008-SAW Yl ‘g Xipuaddy

o1

Lsopq
osopq

ssopq
SyJ3u
Isopq

100q4
100q
asopq

sopq
qwdo

seiq

seiq

Buiysay
anuy
as|e}

8100
6100
L€00
€000
0881

000€

€091
= 0091
= 0881
= 9080
= 0000

= 0000

i

0000
Hi
= 0000

TOONOD
CNQILERER2QRRRI88RAQ

FN(’)VIO(DI\QO)‘C_)

191

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

oqdor‘y 1X|
peal 0} s)OBJ} JO JAquINU: S)Ju‘g 1AW
patea|d o160): 1osal Ino

18]j01U0D By} Jed|o
uejspj|od zul

$U0 youms!: yzco iue

msq ul

310 SI YOolIMsS 10049 §I ¥08Yd

a1Aqu ul

adAu ul

snjejs ysip Jes|o

oguow 0} ||BD Jo ased ul: ‘yoeys‘ds X
30Bj}S 10} }00g JO pud asn: yoot nba
uoljouny peas ysip! Uy nbs

BAlIp PO109|as ajeIqL|BOal: yg nbe
yoyms jo0q: yjso nba

ssaippe qdoi ybiy: g+aseq nba
ssaippe qdol mo|: L+8seq nba
uod snjejs ysip: aseq nba

19]|04JUOD Josall J+3SBq nba

91AQ }nsal: g+9seq nba

adAy ynsaisl L+aseq nba

18]|043u0d Aq pasn ,aseq,’ ug/0 hbe
Qguow 10} UOIBD0| e}Sal: yjoj40 nba
aseq Jojuow gl yposglo nba

:MeISp|0D

‘

:Jejsa
yoejs
jpeal
|eoad
msq
uby
Mol
eisp

1osa.
a1Aqu
adAu
aseq
oguow
oguow

ogevic cloe
€090 0ioge

}.€P @00¢€

0€.02¢° q00¢€
2099 600¢
Hap L00€

q.9p S00€
6.9P €00

1000LE 000€

= 0010
= ¥000
= £000

= 300
=©/00
=600
= 8100

=400
=4q.00
= 6100
=8.00

= Jol
= 008}

a9
19
09
6G
8G
LS
96
SS
12°]
€S
cs
LS
0S
6v
1514
VA4
14
1°14

1534
[44
44
ov
6¢€
8¢
LE
9¢
GE

€e
4
(8
oe

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

192

Bunsay jou J

jipus

Jjoyuow o3 o6 pguouu Zuo

Bunsay y

XXXX/D10/%89S/419 IpPe/UNLIBAC: qOLLLL e
ajojsau’ Jel

18s 1q Apeal jou! Qguowl 20

el
oguow 03 o6 uayy ‘Apeal jou JI

snjeys 3o9yd ‘938|dwod o/ a1Aqu ul
jipus

peo| ay} Aujai: ueiss oul

Bunsay jou]

Jipus

Ol 40 || Ji Joyuow 03 06! (pguouwu oud
Bunse]

g 1o

qti ue

adAu V]

SNje)s YsIp %93yo

oyem z(

14 lue

yeisp ul

ubiyr o

ye Aow

Moj! o

I'e Aow

quido ojul %OBJ} 1X8U/)SAl) peds

9199 2€0E
}1 Leoe
43100p 820e
Ll PcoE

q.ap 9Z0€

0€002P 8¢0¢€

€09} 9¢0¢
€099 $20¢
6.9P ¢eoe

0€q 1.2 }10€

Y099 P LOE

‘oyem 8.49pP q10¢
B/EP 610€

9/ 8i0¢€

6.€P 910€

PLSL0E

yels

G6

€6
c6
16
06
68

.8
98

8833

18
08
6.
8.
LL
9.
S.L
Ve
€.
cL
LL
0.
69

L9
99

3338

193

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

pesas puodas Jo aseq: 8¢2L.0sopg+qdwd

| J0j08s! L

L yoeuy: X

| }OBJ} UO pBAI O} SI0}03S! Lsopq
jpeau

yos

oqdol-¢

sopq jO aseq e ue)s! qudo

0 OB} UO g J0}08S YHM LB]S! 2
0 oeuy! 0

0 >OBJ} UO peals O} S10}09S #! osopq
uolouNy peal: jpeal

ayepdn ou ‘mooi: yos

pua

Mp
ap
ap
ap
ap
qp

nba
Mp
qp
qp
qp
ap
qp

$)00|q J9)owe.ed

j00q

dwf

sdwl dn j8s pue ‘abessaw |eniul Julid 03 1009 0} dwilf

uels
$)OBI} UMOP JUNOD! q
qdoi }xau buissaippe: p

qdo jo yibus|: |qdoi‘p

peo| ay} Aai: ueis.

zul

10p
pep
x|

jipua
zul

‘1qdol

|qdo!

0s0€

0008 810¢e
10 PYOE
10 3v0€
81 avoe
v0 ev0E
08 6v0¢€

= L000
0000 Lt0€
¢0 9¥0€
00 SY0E
61 vv0€
¥0 €¥0€
08 ¢¥0€

9100€° J€0€

0€S1¢d 2¢g0¢e
S0 9€0¢e
61 eEOE
00,0t} Le0E

0€002° ¥E0E

ocl
gcl
144
gcl
ccl
el
oct
6L
8Lt
Lt
oLt
St
14
14 4
cLi
LEL
oLt
601
801
L01
901
SOt
oL
€01
]
101
00l
66
86
16

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

194

96 €6 ¢8

0c 61

Oy 6¢ 8¢

6.

¥6

vel

81

el

9¢

14"

S.
16
68

octL
98

Ll

91t

801

L

€Ll

Se

cL

L
[40]8
VA4
6V
€8
08
LS

cLl
0§

09

#L11

#ELL
L9
69

0L
Sc
1]
€S
le
#S1
6¢
Le
S¢
Ll
6¢

ve

#0.
#8

#€9
#vv
34
#ov
#c€
#9€
#ev
#ey
#G€
#ie
#9¢
#1€
o]
#611
19
#6€
#0v
#.
#8¢€
#l1
#¢S
#y
#0¢
#cl
#.8
#9¢
#61
#6¢
#8¢
#81
#€¢€

aiLoe
Hi
0000
Sioe
0010
6,00
000€
ol
4200
€000
¥000
9,00
€091
€000
008}
2000
6v0¢€
cvoe
6200
2/00
0000
8200
0000
,00€
400
0091
0000
LE00
088l
0881
8100
6100
9080
8100

ojem
oni}
Bunsay
uels
)oej}s
adAu
uejs.
oguouw
josal
|eoals
jpeal
a1Aqu
j00qu
S
oguow
|qdol
tqdot
oqgdoi
mojl
ybyt
as|e}
1eisp
qudo
Uelsp|oo
msq
1009
selq
ssopq
Isopq
asopq
Lsopq
osopq

sopq
aseq

195

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix E: A Skeletal Cold Start Loader

; this is a sample cold start loader, which, when

; modified

; resides on track 00, sector 01 (the first sector on the
; diskette). we assume that the controller has loaded
; this sector into memory upon system start-up (this
; program can be keyed-in, or can exist in read/only
; memory

; beyond the address space of the cp/mversionyou are
; running). the cold start loader brings the cp/m system
; into memory at “loadp” (3400h + “bias”). in a 20k

; memory system, the value of “bias” is 0000h, with

; large

; values for increased memory sizes (see section 2).
; after

; loading the cp/m system, the cold start loader
; branches

; to the “boot” entry point of the bios, which begins at
; “bios” + “bias.” the cold start loader is not used un-
; til the system is powered up again, as long as the bios
; is not overwritten. the origin is assumed at 0000h, an
; must be changed if the controller brings the cold start
; loader into another area, or if a read/only memory

; area
; is used.
0000 org 0 ; base of ram in
;cp/m
0014 = msize equ 20 ; min mem size in
; kbytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 197

0000 = bias equ (msize-20)*1024 ; offset from 20k

; system
3400 = ccp equ 3400h+bias ; base of the ccp
4a00 = bios equ ccp+1600h ; base of the bios
0300 = biosl equ 0300h ; length of the bios
4a00 = boot equ bios
1900 = size equ bios+biosl-ccp ; size of cp/m
; system
0032 = sects equ size/128 ; # of sectors to load
; begin the load operation
cold:
0000 010200 IXi b2 ; b=0, c=sector 2
0003 1632 mvi d,sects ; d=# sectors to
; load
0005 210034 Ixi h,ccp ; base transfer
; address
Isect: ; load the next sector

; insert inline code at this point to

; read one 128 byte sector from the

; track given in register b, sector

; given in register c,

; into the address given by <hl>

; branch to location “cold” if a read error occurs

; user supplied read operation goes

; here...

0008 c36b00 jmp past$patch ; remove this
; when patched

000b ds 60h

past$patch:

; go to next sector if load is incomplete
006b 15 der d ; sects=sects-1
006c ca004a jz boot ; head for the bios

; more sectors to load

; we aren’t using a stack, so use <sp> as scratch

; register
; to hold the load address increment
006f 318000 Ixi sp,128 ; 128 bytes per
; sector
0072 39 dad sp ; <hl> =<hi> +
128

198 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0073 Oc
0074 79
0075 felb

0077 da0800

007a 0e01
007c 04
007d c30800
0080

inr ¢ ; sector = sector +1
mov a,c
cpi 27 ; last sector of
; track?
jc Isect ; no, go read
; another

; end of track, increment to next track

mvi c,l ; sector = 1

intr b ; track = track + 1
jmp lIsect ; for another group
end ; of boot loader

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 199

(y8€9L"""'8¥02'¥20L) 821S >00|q BIep ay} si s|q
d)e|suel)} 10}09S 10} ,10}OB} MA)S,, |BUOI}dO SI IV
3OBJ} B UO J8qINU i0}08s)se| auyy si o8|

(1 10 0 Ajjensn) Jaqunu 10}23s 1S4} 3y} SI os)
L-u"fL'0 Jequinu ysip ayj s! up

alaym

[0]'sjo's¥o 1p‘syp‘sIq [31s]‘0s|‘0s} 'Uup
wJoj 8y} sayel I-isij-i9)oweled yoeas

(L-u*"*L'0=!1) AP Y}l 8Y) JO SIIisLIB}ORIBYD
ay} saulap I1-isi|-1919weled pue ‘waisAs /4D ay} 0}
payoene saAlp ysip |B2160] JO 1aquinu 8y) Si U 3iaym

jopua
u-isi|-1919weled joapysip

L-1sl|-1e)8we.led japysip
0-1s1|-1810we.ed jopysip
u sysip

sl
S||ed 0 aouanbas ay} aiaym ‘mojaq uaaib soioew
ay} Buisn pauijap ase saAup ysip [eo160] W/dD

0S6€6

VO ‘9n0ID) d1j108d
6.S xog
youeasay |eubig
6,61 @ ybuidoo

Aseiqi) uoniuyep-a1 %sIp 0°'2 W/dO

Areiqr uomuyaq dsid W/dD 4 xipuaddy

™

N

N

N

~ANNBTOONOD S v+
<

-
™

~ © &
L RYRY

w
N

~ QAN M
N NN

~rAOTOHON~NOD
Ll ol ol ol ol o e

201

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

a|ge) aje|suely: 40000 ‘upR}Xx Mp
181 1opeay ysip a|buls e suljep
up ouoew

‘azIs
300[q [[BWS B Y}m paulyap si azis ysip abie| e j1 abie)
aunb aq ||1m 103108A UOIIBDO| B 3Y] JBY] 910U "A|quasse
ay) Jo pua ay) je , zisiep,, J0 an|eA ay} Aq uaalb si eaue

SIY} JO 9zIs 9y} 'eaJe ejep ay) Jo pua ayj Buimojjoy
UOIBO0| 1XaU 8y} Saulap ,1eppus,, JO anjeA ayj ajiym
‘so1q 8y} 9A0Qe eaJe wel azijeniuiun ayj jo buiuuibaq
ayj} saulyep A|quiasse Jo pua ayj e, jepbaq,, jo anjea au}

jopua
wpua
01SP% jopsIp

L+Ysp 1es Asp
I 1dau

0 1es 3ysp
2'v9'v9'epe'¥20L'9'92 L0 jopsip
14 S)sIp

AQ pauljep s walsAs /4D 9AlIPp INO} piepue)s e

‘wp ysip pauyep Ajsnoinaud e

Se sol}s1i9)0eieyd awes ay} Buiaey se up ysip saulyap
wp‘up

w10} 8y} ‘9oudiudAu0D 10}

pua A10310841p/)91 8910} ydiym 0 jeuondo ue si [o]
(p1om) dixs 0} syoeu} JO Jaquinu ayy si sjo
wNS393Yyd 0} SJUdWd|d JIp JO Jaquinu ayj si SO
(piom) sjuswaja A10}0841p 4O J8qWNU 3y} SI ap

(p10Mm) sjudwaadul s|q Ul azIs YsIp ay) s! Syp

:upwgadp

1pyxsp

V9
‘€9
:¢9

.19

‘09
‘65
‘8G
LS
‘9§
‘GS
el
‘€S
‘2s
MR
. .08
6y
8y
Ly
Beig
{Gh
B44
‘€Y
R4 4
‘W
oy
‘6¢€
‘8¢
A
‘9¢
' :Ge
ve
€€
‘et

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

202

ynsaa se upab anjea saonpoud

U‘W JO JOSIAIP UOWWOD }sajealb

Juswiwoo

JusWIWod

¥o0|q wJied ysip:

s¥00jq Jajawedsed ysip Jo aseq:
aoua.9jal 19)e| 10} !

SJ0}08A 20||e ‘}09yD!
300|q wJied‘ynq 1ip:
Bale YojJeIoS!

u‘w oJoew

wpua
ejep Mp
Jjuswaje)s Mp e aulap
juswwoo‘elep OJOBW

wpua

ejep qp
JuUsWae)S gp B aulsep
juswwoo‘elep oJoew

wpua
$ nba

up oJoew

wpua

wpua

L+9XU)Sp ETS
XUMSP% JPYXSp
pu ydau

0 1es
sjuawaja pu ay) ajesauab
$ nba

pu 198

SYSIp pu auyap
pu oioew

wpua
UPQAB‘UPRBASO Mp
upeqdp‘ynquip Mp

4000040000 Mp

. ‘86
1116
‘96
‘S6
‘¥6
‘€6
¢6
‘16

.06

app

upgqdp
ipyqadp

‘68

‘88
£:8
‘98
‘68
‘v8
‘€8
‘c8

-8

IXUMsp

IXuMSp

aseqdp
s)ysipu

‘e

s)sIp

‘08
‘64
8L
L
9.
‘S
ve

‘€L

‘el
‘WL
‘0L
‘69
‘89
L9
‘99
‘S9

203

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

%00|q /S10}08S J0 Jaquinu: 8zL/s19

188

an|eA Yiys 300jq ay) ajelausb

SJUBWA|® WNSYD3Yd }JO Jaquinu:: v/(s%9)
L+upwgsie

0 3u (g pow (syp))

J01D8A UOIIBD0|[B JO azIs:! g/(s)p)
$40}09S }JO Jaquinu:! [+XBWOaS
XBWOaS ") S10}098S:! (0s})-0s)

a|ge} 9je|sue.} Swes! 28191

921S 10]09A WNSY08YD awes: 08)9SSD
92|IS 10)}08A UOI}eD0||e sWes! osjgsie
sJ9joweled jusjeainbs: osjgqdp

08} snoiaaid se awes up 3sip

98| |nNu

188
jipus
19S

H

188
188
188
as|a
nbs
nba
nbe
nbe
wuauno

i

s9|qe} J9)ke| 10} SlUdWIR]S 189S By} ayelauab

91)'s}0 SYOIIP‘SHP S| S '08|‘0s} ' Up

1pob
upob

0 = 1pob

upob , xpob-wpob

upob/wpob

G€GS9

1 10} 8|qBLIBA:L 0

u J0j 9|qeleAL: u
Ww 10} 9|qeLIBAL w

oidew

wpua
wpua
1os
1os
jipus
w}ixa
/]

1es
1S
1dau
108
1os
198

(uonesausb ajge} ajejsued) 10}08s Ul pasn)

[eAYIq :

LEL

.- 0€1

up@sso

‘6ct

‘8¢t

upgsie

L2

‘9¢clt

upygs|e
$101088
Xewoas

‘Gel
vel
RXAS

‘éct

upRix
upwsso
upgsie
upgqdp

‘et
‘0ct
6Lt
8Ll

ERVAYS

Jopysip

QL1
‘Gt
4"

<Ll

upob
wpob

CLL
‘HEE
‘0Lt
‘601

‘801
201
‘901

1pob
xpob

Belo] 8
Yol

‘€01

1pob
upob
wpob

‘e0l
‘Lot
‘001t

‘66

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

204

jipus

w}xa

o=waup |

]! 1dau

dooj yoes uo s,| yum |ji: 0 198
3¥00|q Jad saujus o Jaquinu:! 2s/s19 108
$8900.d 0} Buiuiewal #:! 1p 188
10109A }iq uolleAIaSal A10)oalIp ajesauab mou

jipus

91 les

g1y |nu jou]

uonisod jisej ui [o] [euondo aq Aew

jipus

(1 4ys Yswyxa) 1os

952 < (s)p)]

uoneodojje alAg a|gnop ag Aew

wpud

g/1eayiq 198

| 10 (1 1YS YSwixa) 198

HIYS 0} ai0w 3SIMIBYIO

jipus

wixd

L=1eA)iq]

9l 1day

S| YUMm Jybur wouy 1yt 0 198
%00|q /s33Aqo|1y JO Jequinu:! ¥20L/s1q 18s
8)Aq Ysew }juaixa ay} aelsauab

wpua

c/lemiiq 1es

[40 (] 1ys %swy(q) jos

L+1Usy|Iq 198

194 punoy jou | J8pio ybiy ‘asimiaylo

jipus

wyxa

L=leA)Iq 1]

uonisod j1q yoea 1o} dJUOo:! 1 1dau
W61 wouy S| UM S|l 0 198
{ea)|q ui s,0 b sunood! 0 108

N1941p
sHq4Ip
wa.ip

HSwixe

)Swixa

|eANIq
YSwixa

‘o

yswixa
leAjIq

‘691
‘891
191
‘991
‘Gl
Yol
‘€91
‘29t
‘Lot
‘091
‘661
t:gG1L
LSt
‘961
‘GG1
RN+
‘€Sl
‘¢St
‘ISt
‘051
6yl
B:ig"
A 4"
el gt
Beigh
B44s

“eplL

[eAxIq
Aswiq
JusyIq

eyl
‘i
‘ovi
‘6€1

.. .8€1L

Aswiq
usyiq

‘LEL
‘9€1
‘GElL
veEl
‘eel
‘el

205

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ajesauab o} sjuawale Jo Jaquinu sI }sydu

upob/sio}oes 1es

(Mo)s's10108s)pob = upob

1)S°s1010989, pob

MO|JIBA0 UO U0 AQ SBAOW:! 0 TS
1114 0} 10108S }xdU!! 0 188
a|qe} aje|suely ayy ajesauab

as|e

ajqe)} aje|x ou: 0 nba
0=pis 3

as|a

a|qe} aje|x ou! 0 nba

Pis |nu]

pajsanbau i ‘a|qe)} aje|sued) ay) ajesousb
<}9SJ0:>'s40Y, Mpp

<BZIS X28YD!>'p/(SN2)% Mpp
<190][e:>'Us40 PUB ¥|q41p% app
<0°0|[8:>‘g 4US 3|q41P% app

<xew A10308.1p > L-(11P)% Mpp
<1-8ZIs YSIP>'L-(S)P)% Mpp

<Msew JUIXa>"YSWIXaY, app
<jsew ¥20|q:>"YswH|q% app
<UIUs %001q:>JUsiIq% qpp
<)oeu} Jad 99s:>'S10)08S9, Mpp
$ nba ajesausb:: up Jpyaqadp
wpus

jipus

0 18s

as|e

S$YqUIp-WwallIp 1os

SHQUIp < wauIp |

yoo08 40 (1 4ys ¥1q41p) 188

Hqg Japio ybry | ppe pue ybu yiys
uiebe aouo ajesa)l ‘919jdwo9 J0U

isyau

0

seqixu
298]XU

‘e

upRiXx

upRIX

waalip
wa.uip

H1q41p

:€0¢
:¢0¢
‘10¢
‘00¢c
‘661
‘861
161
‘961
‘G61
61
‘€61
‘¢61l
‘16l
.. 06t
‘681
‘881
1181
‘981
‘681
V8l
‘€81
‘e8l
‘181
‘081
‘6.1
‘8Ll
LY
‘91
‘GLL
BZA"
‘€L
A%

I WA

0L

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

206

seaJe ejep wel Aiessadau ay) ayelauab

UPRIBA%'UPRQ|
leA‘up‘q

aoeds
aoeds‘qe|

1S9} S|g |nu Jo pud:!
1S9} OB} |NU JO pud’!

STEI
seqixu
L+Seqixu
0 = syau
L-s}y8u

$10}09s-09S)XU
$10108S =< 29S)IXU
(J%s)+09sIXU

(9s})+0081XUY,

(0s})+0081XUY,
962 > $10}08s

10}08S yoea 10} 9ouo:! $10}08s
8|qe) aje|sue.}! $

19)UNo9*! 1sy8u

oJoew

wpus

spjap
oJloew

wpus

sp
oJoew

wpua
jipus
jipus
wpua
jipus
198
198
198

1]

198
jipus
108

]

198
jipus
Mpp
as|e
qpp
1]
1dau
nba
198

sjuawala snoiraud dejuano am 810j9q

Jjepua

AR
‘9ge

1574
‘vee
‘eee

SPI

‘¢ee

-1lege
‘0ge

ge|
spjap

‘6¢¢c
‘8¢¢

-:Lec
‘9¢e
‘Gee
‘vée
‘€ec
‘¢cc

syau
29SIXU
seqixu

‘kee
‘0¢¢e
‘6L¢

‘8lc

SIE

Lie

‘9le

J9sIxXu

‘Gle

B 4%

J9SsIXuU

‘€le

‘cle
‘Lie
‘0le
‘60¢
‘80¢
1202

upgIX :
sjeu :

90¢
S0¢

‘v0C

207

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

wpua
pJo%ai xay sa240} julod siyy Je 0 qp

yepbaq-¢ nba

$ nba

wpua

L+IXUNSP I

S20‘}XUYSPY‘ASO sp|

S[B‘IXUXSPY% ‘Al sp|

3SIP yoea 10} 90uo:! Sysipu ydau

0 1es

Jayng ssaooe A103o8lIp! g8l sp
$ nbs

z1s18p
jeppua

Xuysp

IXuysp
nquip
1epbaq

‘6ve
82144
A £
‘9ve
‘Sve
B4
‘eve
‘eve
‘e
‘ove
‘6€¢C
‘8€¢

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

208

—
O WOONOOLEWN =

WWWWNNNNPDNDNODMNDNDNND = = 2 = 4o
WN 200NN RERWN=2O0OOWONOOOHAWN =

Appendix G

@y
@x

’

’

0800 = blksiz
0200 = hstsiz
0014 = hstspt
0004 = hstblk
0050 = cpmspt

Blocking and Deblocking
Algorithms

sector deblocking algorithms for cp/m 2.0

utility macro to compute sector mask

macro

hblk

compute log2(hblk), return @x as result
(2 ** @x = hblk on return)

set hblk

set 0

count right shifts of @y until = 1
rept 8

if @y =1

exitm

endif

@y is not 1, shift right one position
set @y shr 1

set @x +1

endm

endm

cp/m to host disk constants

equ
equ
equ
equ
equ

2048 ;cp/m allocation size
512 ;host disk sector size
20 ;host disk sectors/trk
hstsiz/128 ;cp/m sects/host buff
hstblk * hstspt ;cp/m sectors/track

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 209

34 0003 = secmsk equ hstblk-1 ;sector mask

35 smask hstblk ;compute sector mask
36 0002 = secshf equ @x ;log2(hstblk)

37 ;

38 ;

39 ;

40 ; bdos constants on entry to write

41 ;

42 ;

43 0000 = wrall equ 0 ;write to allocated
44 0001 = wrdir equ 1 ;write to directory
45 0002 = wrual equ 2 ;write to unallocated
46 ;

47 ;

48 ;

49 ; the bdos entry points given below show the

50 ; code which is relevant to deblocking only.

51 ;

52 ;

53 ;

54 ; diskdef macro, or hand coded tables go here

55 0000 = dpbase equ $;disk param block base
56 ;

57 boot:

58 wboot:

59 ;enter here on system boot to initialize

60 0000 af xra a ;0 to accumulator
61 0001 326a01 sta hstact ;host buffer inactive
62 0004 326c01 sta unacnt ;clear unalloc count
63 0007 c9 ret

64 ;

65 home:

66 ;home the selected disk

67 home:

68 0008 3a6b01 Ida hstwrt ;check for pending write
69 000b b7 ora a

70 000¢ ¢c21200 jnz homed

7 000f 326a01 sta hstact ;clear host active flag
72 homed:

73 0012 c9 ret

74 ;

75 seldsk:

76 ;select disk

77 0013 79 mov a,c ;selected disk number
78 0014 326101 sta sekdsk ;seek disk number
79 0017 6f mov l,a ;disk number to hi
80 0018 2600 mvi h,0

81 rept 4 ;multiply by 16

82 dad h

83 endm

84 001a+29 dad h

85 001b+29 dad h

86 001c+29 dad h

87 001d+29 dad h

88 001e 110000 Ixi d,dpbase ;base of parm block

210 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

89

90

o1

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

0021 19
0022 c9

settrk:

0023 60
0024 69
0025 226201
0028 c9

setsec:
0029 79

002a 326401
002d c9

setdma:

002e 60
002f 69
0030 227501
0033 c9

sectran:

0034 60
0035 69
0036 c9

read:

0037 af
0038 326¢c01
003b 3e01
003d 327301
0040 327201
0043 3e02
0045 327401
0048 c3b600

004b af

dad d
ret

;set track given by registers bc

mov h,b

mov l,c

shid sektrk ;track to seek
ret

;set sector given by register ¢

mov a,c
sta seksec ;sector to seek
ret

;set dma address given by bc

mov h,b
mov l,c

shid dmaadr
ret

;translate sector number bc

mov h,b
mov l,c
ret

the read entry point takes the place of
the previous bios definition for read.

;read the selected cp/m sector

xra a

sta unacnt

mvi a,1

sta readop ;read operation

sta rsflag ;must read data

mvi a,wrual

sta wrtype ;treat as unalloc
jmp rwoper ;to perform the read

the write entry point takes the place of
the previous bios definition for write.

;write the selected cp/m sector
xra a

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

;hi=.dpb(curdsk)

;0 to accumulator

211

144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199

212

004c 327301
004f 79
0050 327401
0053 fe02
0055 ¢26f00

’

0058 3e10

005a 326¢01
005d 3a6101
0060 326d01
0063 2a6201
0066 226e01
0069 3a6401
006c 327001

chkuna:

006f 3a6¢c01
0072 b7
0073 caae00

0076 3d
0077 326c01
007a 3a6101
007d 216d01
0080 be
0081 c2ae00

)

0084 216e01
0087 cd5301
008a c2ae00

008d 3a6401
0090 217001
0093 be

0094 c2ae00

0097 34
0098 7e
0099 fe50
009b daa700

009e 3600
00a0 2a6e01
00a3 23
00a4 226e01

noovf:

00a7 af

sta readop ;not a read operation
mov a,c ;write type in ¢

sta wrtype

cpi wrual ;write unallocated?
jnz chkuna ;check for unalloc

write to unallocated, set parameters

mvi a,blksiz/128 ;next unalloc recs
sta unacnt

lda sekdsk ;disk to seek

sta unadsk ;unadsk = sekdsk
Ihid sektrk

shid unatrk ;unatrk = sectrk
Ida seksec

sta unasec ;unasec = seksec

;check for write to unallocated sector

Ida unacnt ;any unalloc remain?
ora a
jz alloc ;skip if not

more unallocated records remain

dcr a ;unacnt = unacnt-1
sta unacnt

Ida sekdsk ;same disk?

Ixi h,unadsk

cmp m ;sekdsk = unadsk?
jnz alloc ;skip if not

disks are the same

Ixi h,unatrk
call sektrkcmp ;sektrk = unatrk?
jnz alloc ;skip if not

tracks are the same

Ida seksec ;same sector?

Ixi h,unasec

cmp m ;seksec = unasec?
jnz alloc ;skip if not

match, move to next sector for future ref

inr m ;unasec = unasec+1
mov a,m ;end of track?

cpi cpmspt ;count cp/m sectors
jc noovf ;skip if no overflow

overflow to next track

mvi m,o ;unasec = 0

lhid unatrk

inx h

shid unatrk ;unatrk = unatrk+1

;match found, mark as unnecessary read
xra a ;0 to accumulator

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

200 00ab 327201 sta rsflag ;rsflag =0

201 00ab c3b600 jmp rwoper ;to perform the write
202 ;

203 alloc:

204 ;not an unallocated record, requires pre-read
205 00ae af xra a ;0 to accum

206 00af 32601 sta unacnt ;unacnt =0

207 00b2 3c inr a ;1 to accum

208 00b3 327201 sta rsflag =1 ;rsflag = 1

209 ;

210 ;

211 ;

212 ; common code for read and write follows

213 ;

214 ;

215 rwoper:

216 ;enter here to perform the read/write

217 00b6 af xra a ;zero to accum
218 00b7 327101 sta erflag ;no errors (yet)
219 00ba 3a6401 Ida seksec ;compute host sector
220 rept secshf

221 ora a ;carry =0

222 rar ;shift right

223 endm

224 00bd+b7 ora a ;carry =0

225 00be+1f rar ;shift right

226 00bf+b7 ora a ;carry =0

227 00cO+1f rar ;shift right

228 00c1 326901 sta sekhst ;host sector to seek
229 ;

230 ; active host sector?

231 00c4 216a01 IXi h,hstact ;host active flag
232 00c7 7e mov a,m

233 00c8 3601 mvi m,1 ;always becomes 1
234 00ca b7 ora a ;was it already?
235 00cb caf200 jz filhst fill host if not
236 ;

237 ; host buffer active, same as seek buffer?

238 00ce 3a6101 Ida sekdsk

239 00d1 216501 Ixi h,hstdsk ;same disk?

240 00d4 be cmp m ;sekdsk = hstdsk?
241 00d5 c2eb00 jnz nomatch

242 ;

243 ; same disk, same track?

244 00d8 216601 Ixi h,hsttrk

245 00db ¢d5301 call sektrkcmp ;sektrk = hsttrk?
246 00de c2eb00 jnz nomatch

247 ;

248 ; same disk, same track, same buffer?

249 00e1 3a6901 Ida sekhst

250 00e4 216801 Ixi h,hstsec ;sekhst = hstsec?
251 00e7 be cmp m

252 00e8 ca0fo1 jz match ;skip if match
253 ;

254 nomatch:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 213

255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

214

00eb 3a6b01
00ee b7
00ef c45f01

filhst:

00f2 3a6101
0015 326501
008 2a6201
00fb 226601
00fe 3a6901
0101 326801
0104 3a7201
0107 b7

0108 c46001
010b af

010c 326b01

match:

010f 3a6401
0112 e603
0114 6f
0115 2600

0117+29
0118+29
0119+29
011a+29
011b+29
011c+29
011d+29

011e 117701
0121 19
0122 eb
0123 2a7501
0126 0e80
0128 3a7301
012b b7
012¢ ¢23501

’

012f 3e01
0131 326b01
0134 eb

rwmove:

0135 1a
0136 13
0137 77

;proper disk, but not correct sector

Ida hstwrt ;host written?
ora a
cnz writehst ;clear host buff

;may have to fill the host buffer

Ida sekdsk

sta hstdsk

Ihid sektrk

shid hsttrk

Ida sekhst

sta hstsec

Ida rsflag ;need to read?
ora a

cnz readhst ;yes, if 1

xra a ;0 to accum
sta hstwrt ;no pending write

;copy data to or from buffer

Ida seksec ;mask buffer number
ani secmsk ;least signif bits
mov l,a ;ready to shift
mvi h,0 ;double count
rept 7 ;shift left 7

dad h

endm

dad h

dad h

dad h

dad h

dad h

dad h

dad h

hl has relative host buffer address

Ixi d,hstbuf

dad d ;hl = host address
xchg ;now in de

Ihid dmaadr ;get/put cp/m data
mvi c,128 ;length of move
Ida readop ;which way?

ora a

jnz rwmove ;skip if read

write operation, mark and switch direction

mvi a1

sta hstwrt ;hstwrt =1

xchg ;source/dest swap

;¢ initially 128, de is source, hl is dest

ldax d ;source character
inx d
mov m,a ;to dest

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

0138 23 inx h
0139 od dcr c ;loop 128 times
013a c23501 jnz rwmove

data has been moved to/from host buffer

013d 3a7401 lda wrtype ;write type

0140 fe01 cpi wrdir ;to directory?

0142 3a7101 Ida erflag ;in case of errors
0145 c0 rnz ;no further processing

; clear host buffer for directory write

0146 b7 ora a ;errors?

0147 cO rnz ;skip if so
0148 af xra a ;0 to accum
0149 326b01 sta hstwrt ;buffer written
014c cd5f01 call writehst

014f 3a7101 Ida erflag

0152 c9 ret

; utility subroutine for 16-bit compare

sektrkcmp:
;hl = .unatrk or .hsttrk, compare with sektrk
0153 eb xchg
0154 216201 Ixi h,sektrk
0157 1a Idax d ;low byte compare
0158 be cmp m ;same?
0159 c0 rnz ;return if not
; low bytes equal, test high 1s
015a 13 inx d
015b 23 inx h
015c 1a Idax d
015d be cmp m ;sets flags
015e c9 ret

; writehst performs the physical write to
; the host disk, readhst reads the physical

; disk.

writehst:
;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz” bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error

015f c9 ret
readhst:

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz"” bytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 215

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

216

0160 c9

0161
0162
0164

0165
0166
0168

0169
016a
016b

016¢c
016d
016e
0170

0171
0172
0173
0174
0175
0177

0377

sekdsk:
sektrk:
seksec:

hstdsk:
hsttrk:
hstsec:

sekhst:
hstact:
hstwrt:
unacnt:
unadsk:
unatrk:
unasec:

erflag:
rsflag:
readop:
wrtype:
dmaadr:
hstbuf:

;into hstbuf and return error flag in erflag.
ret

uninitialized ram data areas

—

ds :seek disk number
ds 2 ;seek track number
ds ;seek sector number

—

-—r

ds ;host disk number
ds 2 ;host track number

ds 1 ;host sector number
ds 1 ;seek shr secshf

ds 1 ;host active flag

ds 1 ;host written flag

ds 1 ;unalloc rec cnt

ds 1 ;last unalloc disk

ds 2 ;last unalloc track
ds 1 ;last unalloc sector
ds 1 ;error reporting

ds 1 ;read sector flag

ds 1 ;1 if read operation
ds 1 ;write operation type
ds 2 ;last dma address
ds hstsiz ;host buffer

the endef macro invocation goes here

end

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

alloc
blksiz
boot
chkuna
cpmspt
dmaadr
dpbase
erflag
filhst
home
homed
hstact
hstblk
hstbuf
hstdsk
hstsec
hstsiz
hstspt
hsttrk

hstwrt
match
nomatch
noovf
read
readhst
readop
rsflag
rwmove
rweper
secmsk
secshf
sectran
sekdsk
sekhst
seksec
sektrk
sektrkcmp
seldsk
setdma
setsec
settrk
unacnt
unadsk
unasec
unatrk
wboot
wrall
wrdir
write
writehst
wrtype
wrual

00ae
0800
0000
006f

0050
0175
0000
0171
00f2

0008
0012
016a
0004
0177
0165
0168
0200
0014
0166

016b
o10f

00eb
00a7
0037
0160
0173
0172
0135
00b6
0003
0002
0034
0161

0169
0164
0162
0153
0013
002e
0029
0023
016¢
016d
0170
016e
0000
0000
0001

004b
015f

0174
0002

164
294#
57#

148
33#

109
55#

218

235
65#
70
61
32#

291

239

250
30#
31#

244

68
252
241
189
124#
270
129
130
298
133

34#

36#
112#

78
228
102

96
176

75#
105#

99#

92#

62
154
158
156

58#

43#

44#
141#
258
132

45#

172
151

160#
188
294
88
317
2604
67#
72#
71
33
396#
263
267
32
33
265

256
2744
246
197#

362#
144
200
305#
201
277
220

153
249
157
155
245

127
170
181
175

316

325

146
131

177

395#

326

231
34

378#
380#
396

3794
272

2544

296
208
312
215#

169
266
180
264
334#

152
387#
3894
193

355#
315
147

183

3914

383#
35

302

393#
268

238
382#
219
337

162

195

394#

203#

324 384#

392#

262 374#

276 376#

375#

168 206 386#
388#

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 217

Appendix H: Glossary

address: Number representing the location of a byte in memory. Within CP/M there are
two kinds of addresses: logical and physical. A physical address refers to an absolute and
unique location within the computer’s memory space. A logical address refers to the
offset or displacement of a byte in relation to a base location. A standard CP/M program is
loaded at address 0100H, the base value; the first instruction of a program has a physical
address of 0100H and a relative address or offset of OH.

allocation vector (ALV): An allocation vector is maintained in the BIOS for each logged
in disk drive. A vector consists of a string of bits, one for each block on the drive. The bit
corresponding to a particular block is set to one when the block has been allocated and to
zero otherwise. The first two bytes of this vector are initialized with the bytes AL0O and
AL1 on, thus allocating the directory blocks. CP/M Function 27 returns the allocation
vector address.

ALO, AL1: Two bytes in the disk parameter block that reserve data blocks for the
directory. These two bytes are copied into the first two bytes of the allocation vector
when a drive is logged in. (See allocation vector.)

ALV: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ?
or *, in the primary filename or the filetype, or both. When you replace characters in a
filename with these wildcard characters, you create an ambiguous filename and can easily
reference more than one CP/M file in a single command line.

American Standard Code for Information Interchange: See ASCII.

applications program: Program designed to solve a specific problem. Typical applications
programs are business accounting packages, word processing (editing) programs and
mailing list programs.

archive attribute: File attribute controlled by the high-order bit of the t3 byte (FCB+11)
in a directory element. This attribute is set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which you can substitute a
number, letter or name to give an appropriate meaning to the formula in question.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 219

ASCIl:American Standard Code for Information Interchange. ASCIl is a standard set of
seven-bit numeric character codes used to represent characters in memory. Each charac-
ter requires one byte of memory with the high-order bit usually set to zero. Characters
can be numbers, letters, and symbols. An ASCII file can be intelligibly displayed on the
video screen or printed on paper.

assembler: Program that translates assembly language into the binary machine code.
Assembly language is simply a set of mnemonics used to designate the instruction set of
the CPU. (See ASM in Section 3 of this manual.)

back-up: Copy of a disk or file made for safekeeping, or the creation of the duplicate
disk or file.

Basic Disk Operating System:See BDOS.

BDOS: Basic Disk Operating System.The BDOS module of the CP/M operating system
provides an interface for a user program to the operating system. This interface is in the
form of a set of function calls which may be made to the BDOS through calls to location
0005H in page zero. The user program specifies the number of the desired function in
register C. User programs running under CP/M should use BDOS functions for all I/O
operations to remain compatible with other CP/M systems and future releases. The
BDOS normally resides in high memory directly below the BIOS.

bias: Address value which when added to the origin address of ycur BIOS module
produces 1F80H, the address of the BIOS module in the MOVCPM image. Thereis also a
bias value that when added to the BOOT module origin produces 0900H, the address of
the BOOT module in the MOVCPM image. You must use these bias values with the R
command under DDT or SID when you patch a CP/M system. If you do not, the patched
system may fail to function.

binary: Base 2 numbering system. A binary digit can have one of two values: 0 or 1.
Binary numbers are used in computers because the hardware can most easily exhibit two
states: off and on. Generally, a bit in memory represents one binary digit.

Basic Input/Output System:See BIOS.

BI10OS: Basic Input/Output System. The BIOS is the only hardware-dependent module of
the CP/M system. It provides the BDOS with a set of primitive I/O operations. The BIOS
is an assembly language module usually written by the user, hardware manufacturer or
independent software vendor, and is the key to CP/M'’s portability. The BIOS interfaces
the CP/M system to its hardware environment through a standardized jump table at the
front of the BIOS routine and through a set of disk parameter tables which define the disk
environment. Thus, the BIOS provides CP/M with a completely table-driven I/O system.

BIOS base: Lowest address of the BIOS module in memory, that by definition must be
the first entry point in the BIOS jump table.

bit: Switch in memory that can be set to on (1) or off (0). Bits are grouped into bytes, eight
bits to a byte, which is the smallest directly addressable unit in an Intel 8080 or Zilog Z-80.
By common convention, the bits in a byte are numbered from right (0 for the low order
bit) to left (7 for the high order bit). Bit values are often represented in hexadecimal
notation by grouping the bits from the low order bit in groups of four. Each group of four
bits can have a value from 0 to 15 and thus can easily be represented by one hexadecimal
digit.

220 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

BLM: See biock mask.

block: Basic unit of disk space allocation. Each disk drive has a fixed block size (BLS)
defined in its disk parameter block in the BIOS. A block can consist of 1K, 2K, 4K, 8K or
16K consecutive bytes. Blocks are numbered relative to zero so that each block is unique
and has a byte displacement in a file equal to the block number times the block size.

block mask (BLM): Byte value in the disk parameter block at DPB + 3. The block mask is
always one less than the number of 128 byte sectors that are in one block. Note: BLM = (2
** BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at DPB + 2. Values for the
block shift and block mask (BLM) are determined by the block size (BLS). Note: BLM = (2
** BSH) - 1.

blocking & deblocking algorithm: In some disk subsystems the disk sector size is larger
than 128 bytes, usually 256, 512, 1024 or 2048 bytes. When the host sector size is larger
than 128 bytes, host sectors must be buffered in memory and the 128 byte CP/M sectors
must be blocked and deblocked by adding an additional module, the blocking and deblock-
ing algorithm, between the BIOS disk I/O routines and the actual disk [/O. The host
sector size must be an even multiple of 128 bytes for the algorithm to work correctly. The
blocking and deblocking algorithm allows the BDOS and BIOS to function exactly as if
the entire disk consisted only of 128 byte sectors, as in the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot program is a small
piece of code that is automatically executed when you power-up or reset your computer.
The boot program loads the rest of the operating system into memory in a manner similar
to a person pulling himself up by his own bootstraps. This process is sometimes called a
“cold boot” or “cold start.” Bootstrap procedures vary from system to system. The boot
program must be customized for the memory size and hardware environment that the
operating system manages. Typically, the boot resides on the first sector of the system
tracks on your system diskette. When executed, the boot loads the remaining sectors of
the system tracks into high memory at the location for which the CP/M system has been
configured. Finally, the boot transfers execution to the boot entry point in the BIOS jump
table so that the system can initialize itself. In this case, the boot program should be placed
at 900H in the SYSGEN image. Alternatively, the boot program may be located in ROM.

bootstrap: See boot.

BSH: See block shift.

BTREE: General purpose file access method that has become the standard organization
for indexes in large data base systems. BTREE provides near optimum performance over
the full range of file operations, such as insertion, deletion, search, and search next.

buffer: Area of memory that temporarily stores data during the transfer of information.

built-in commands: Commands that permanently reside in memory. They respond
quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. A byte can represent a binary

number between 0 and 255, and is the smallest unit of memory that can be addressed
directly in 8 bit CPUs such as the Intel 8080 or Zilog Z-80.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 221

CCP:Console Command Processor. The CCP is a module of the CP/M operating system.
It is loaded directly below the BDOS module and interprets and executes commands
typed by the console user. Usually these commands are programs that the CCPloads and
calls. Upon completion, a command program may return control to the CCP if it has not
overwritten it. If it has, the program can reload the CCP into memory by a warm boot
operation initiated by either a jump to zero, BDOS system reset (function 0), or a cold
boot. Except for its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BDOS function calls for its I/O operations.

CCP base: Lowest address of the CCP module in memory. This term sometimes refers to
the base of the CP/M system in memory, as the CCP is normally the lowest CP/M module
in high memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one byte for each
directory sector to be checked, i.e., CKS bytes. (See CKS.) A checksum vector is initialized
and maintained for each logged in drive. Each directory access by the system results in a
checksum calculation that is compared with the one in the checksum vector. If there is a
discrepancy, the drive is set to read-only status. This feature prevents the user from
inadvertently switching disks without logging in the new disk. If the new disk is not
logged in, it is treated the same as the old one, and data on it may be destroyed if writing is
done.

CKS: Number of directory records to be checked summed on directory accesses. This is a
parameter in the disk parameter block located in the BIOS. If the value of CKS is zero,
then no directory records are checked. CKS is also a parameter in the diskdef macro
library, where it is the actual number of directory elements to be checked rather than the
number of directory records.

cold boot: See boot. Cold boot also may refer to a jump to the boot entry point in the
BIOS jump table.

COM: Filetype for a CP/M command file. See command file.

command: CP/M command line. In general, a CP/M command line has three parts: the
command keyword, command tail, and a carriage return. To execute a command, enter a
CP/M command line directly after the CP/M prompt at the console and press the carriage
return or enter key.

command file: Executable program file of filetype COM. A command file is a machine
language object module ready to be loaded and executed at the absolute address of 0100H.
To execute a command file, enter its primary filename as the command keyword in a
CP/M command line.

command keyword: Name that identifies a CP/M command, usually the primary file-
name of a file of type COM, or a built-in command. The command keyword precedes the
command tail and the carriage return in the command line.

command syntax: Statement that defines the correct way to enter a command. The
correct structure generally includes the command keyword, the command tail, and a
carriage return. A syntax line usually contains symbols that you should replace with
actual values when you enter the command.

command tail: Part of a command that follows the command keyword in the command

line. The command tail can include a drive specification, a filename and/or filetype, and
options or parameters. Some commands do not require a command tail.

222 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CON: Mnemonic that represents the CP/M console device (see console). For example, the
CP/M command “PIP CON:=TEST.SUB” displays the file TEST.SUB on the console
device. The explanation of the STAT command tells how to assign the logical device
CON: to various physical devices.

concatenate: Name of the PIP operation that copies two or more separate files into one
new file in the specified sequence.

concurrency: Execution of two processes or operations simultaneously.
CONIN: BIOS entry point to a routine that reads a character from the console device.
CONOUT: BIOS entry point to a routine that sends a character to the console device.

console: Primary input/output device. The console consists of a listing device, such as a
screen or teletype, and a keyboard through which the user communicates with the
operating system or applications program.

Console Command Processor: See CCP.
CONST: BIOS entry point to a routine that returns the status of the console device.

control character: Nonprinting character combination. CP/M interprets some control
characters as simple commands such as line editing functions. To enter a control charac-
ter, hold down the CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers.An operating system that manages compu-
ter resources and provides a standard systems interface to software written for a large
variety of microprocessor-based computer systems.

CP/M 1.4 compatibility: For a CP/M 2 system to be able to read correctly single density
diskettes produced under a CP/M 1.4 system, the extent mask must be zero and the block
size 1K. This is because under CP/M 2 an FCB may contain more than one extent. The
number of extents that may be contained by an FCB is EXM+1. The issue of CP/M 1.4
compatibility also concerns random file I/O. To perform random file /O under CP/M 1.4,
you must maintain an FCB for each extent of the file. This scheme is upward compatible
with CP/M 2 for files not exceeding 512K bytes, the largest file size supported under
CP/M 1.4. If you wish to implement random I/O for files larger than 512K bytes under
CP/M 2, you must use the random read and random write functions (BDOS functions 33,
34 and 36). In this case, only one FCB is used, and if CP/M 1.4 compatibility is required,
the program must use the return version number function (BDOS function 12) to
determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute your next
command. The CP/M prompt consists of an upper-case letter (A-P) followed by a “>"
character; for example, A>. The letter designates which drive is currently logged in as the
default drive. CP/M will search this drive for the command file specified, unless the
command is a built-in command or prefaced by a select drive command; for example,
B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers to obtain

access to common resources via a network. CP/NET consists of MP/M masters and CP/M
slaves with a network interface between them.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 223

CSV: See checksum vector.

cursor: One-character symbol that can appear anywhere on the console screen. The
cursor indicates the position where the next keystroke at the console will have an effect.

data file: File containing information that will be processed by a program.
deblocking: See blocking & deblocking algorithm.

default: Currently selected disk drive and user number. Any command that does not
specify a disk drive or a user number references the default disk drive and user number.
When CP/M is first invoked, the default disk drive is drive A, and the default user number
is 0.

default buffer: Default 128-byte buffer maintained at 0080H in page zero. When the
CCP loads a COM file, this buffer is initialized to the command tail; that is, any characters
typed after the COM file name are loaded into the buffer. The first byte at 0080H
contains the length of the command tail, while the command tail itself begins at 008 1H.
The command tail is terminated by a byte containing a binary zero value. The [command
under DDT and SID initializes this buffer in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH and 006 CH in page
zero. The first default FCB is initialized from the first delimited field in the command tail,
and the second default FCB is initialized from the next field in the command tail.

delimiter: Speciai characters that separate different items in a command line; for exam-
ple, a colon separates the drive specification from the filename. The CCP recognizes the
following characters as delimiters: . : = ; <> _, blank, and carriage return. Several
CP/M commands also treat the following as delimiter characters:, [] () $. Itis advisable to
avoid the use of delimiter characters and lower-case characters in CP/M file names.

DIR: Parameter in the diskdef macro library that specifies the number of directory
elements on the drive.

DIR attribute: File attribute. A file with the DIR attribute can be displayed by a DIR
command. The file can be accessed from the default user number and drive only.

DIRBUF: 128-byte scratchpad area for directory operations, usually located at the end of
the BIOS. DIRBUF is used by the BDOS during its directory operations. DIRBUF also
refers to the two-byte address of this scratchpad buffer in the disk parameter header at
DPbase + 8 bytes.

directory: Portion of a disk that contains entries for each file on the disk. In response to
the DIR command, CP/M displays the filenames stored in the directory. The directory
also contains the locations of the blocks allocated to the files. Each file directory element is
in the form of a 32-byte FCB, although one file may have several elements, depending on
its size. The maximum number of directory elements supported is specified by the drive’s
disk parameter block value for DRM.

directory element: Data structure. Each file on a disk has one or more 32-byte directory
elements associated with it. There are four directory elements per directory sector.

Directory elements may also be referred to as directory FCBs.

directory entry: File entry displayed by the DIR command. Sometimes this term may
refer to a physical directory element.

224 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

disk, diskette: Magnetic media used for mass storage in a computer system. Programs
and data are recorded on the disk in the same way music can be recorded on cassette tape.
The CP/M operating system must be initially loaded from disk when the computer is
turned on. Diskette refers to smaller capacity removable floppy diskettes, while disk may
refer to either a diskette, removable cartridge disk or fixed hard disk. Hard disk capacities
range from five to several hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC (the Digital Research
macro assembler) creates disk definition tables such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on disk or diskettes.
CP/M assigns a letter to each drive under its control. For example, CP/M may refer to the
drives in a four-drive system as A, B, C, and D.

disk parameter block (DPB): Data structure referenced by one or more disk parameter
headers. The disk parameter block defines disk characteristics in the fields listed below:

SPT The total number of sectors per track

BSH The data allocation block shift factor

BLM The data allocation block mask

EXM The extent mask determined by BLS and DSM
DSM The maximum data block number

DRM Maximum number of directory entries—1

ALO Reserves directory blogks

AL1 Reserves directory blocks

CKS The number of directory sectors check summed
OFF The number of reserved system tracks

The address of the disk parameter block is located in the disk parameter header at DPbase
+0AH. CP/M Function 31 returns the DPB address. Drives with the same characteristics
may use the same disk parameter header, and thus the same DPB. However, drives with
different characteristics must each have their own disk parameter header and disk
parameter blocks. When the BDOS calls the SELDSK entry point in the BIOS, SELDSK
must return the address of the drive’s disk parameter header in registers HL.

disk parameter header (DPH): Data structure that contains information about the disk
drive and provides a scratchpad area for certain BDOS operations. The disk parameter
header contains six bytes of scratchpad area for the BDOS, and the following five
two-byte parameters:

XLT The sector translation table address
DIRBUF Directory buffer address

DPB Disk parameter block address

csv Checksum vector address

ALV Allocation vector address

Given n disk drives, the disk parameter headers are arranged in a table whose first row of
16 bytes corresponds to drive 0, with the last row corresponding to drive n-1.

DKS: Parameter in the diskdef macro library specifying the number of data blocks on the
drive.

DMA: Direct memory access. DMA is a method of transferring data from the disk into

memory directly. In a CP/M system, the BDOS calls the BIOS entry point READ toread a
sector from the disk into the currently selected DMA address. The DMA address must be

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 225

the address of a 128-byte buffer in memory, either the default buffer at 0080H in page
zero, or a user-assigned buffer in the TPA. Similarly, the BDOS calls the BIOS entry
point WRITE to write the record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number.
DPB: See disk parameter block.
DPH: See disk parameter header.

DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRM s one less than the
total number of directory entries allowed for the drive. This value is related to DPB bytes
ALO and AL1, which allocate up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM is the maximum
data block number supported by the drive. The product BLS times (DSM+1) is the total
number of bytes held by the drive. This must not exceed the capacity of the physical disk
less the reserved system tracks.

editor: Utility program that creates and modifies text files. An editor can be used for
creation of documents or, creation of code for computer programs. The CP/M editor is
invoked by typing the command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a series of instructions
that can be carried out by the computer. For example, the computer cannot execute
names and addresses, but it can execute a program that prints all those names and
addresses on mailing labels.

execute a program: Start the processing of executable code.
EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One extent
may contain 1, 2, 4, 8 or 16 blocks. EX is the extent number field of an FCB and is a one
byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending on the block
size (BLS) and the maximum data block number (DSM), an FCB may contain 1, 2, 4, 8 or
16 extents. The EX field is normally set to 0 by the user but contains the current extent
number during file [/O. The term FCB folding describes FCBs containing more than one
extent. In CP/M version 1.4, each FCB contained only one extent. Users attempting to
perform random record I[/O and maintain CP/M 1.4 compatibility should be aware of the
implications of this difference. See CP/M 1.4 compatibility.

extent mask (EXM): A byte parameter in the disk parameter block located at DPB + 3. The
value of EXM is determined by the block size (BL.S) and whether the maximum data block
number (DSM) exceeds 255. There are EXM + 1 extents per directory FCB.

FCB: See file control block.

file: Collection of characters, instructions, or data that can be referenced by a unique
identifier. Files are usually stored on various types of media, such as disks, diskettes, or
magnetic tape. A CP/M file is identified by a file specification and resides on disk as a
collection of from zero to 65,536 records. Each record is 128 bytes and can contain either
binary or ASCII data. Binary files contain bytes of data that can vary in value from OH to

226 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

OFFH. ASCII files contain sequences of character codes delineated by a carriage return-
line feed combination; normally byte values range from OH to 7FH. The directory maps
the file as a series of physical blocks. Although files are defined as a sequence of
consecutive logical records, these records may not reside in consecutive sectors on the
disk. (see also block, directory, extent, record, sector).

file control block (FCB): Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing a file to be accessed or created on the
disk. A file control block consists of 36 consecutive bytes specified by the user for file /O
functions. FCB can also refer to a directory element in the directory portion of the
allocated disk space. These contain the same first 32 bytes of the FCB, but lack the current
record and random record number bytes.

filename: Name assigned to a file. A filename can include a primary filename of 1-8
characters and a filetype of 0-3 characters. A period separates the primary filename from
the filetype.

file specification: Unique file identifier. A complete CP/M file specification includes a
disk drive specification followed by a colon (d:), a primary filename of 1 to 8 characters, a
period and a filetype of 0 to 3 characters. For example, b:example.tex is a complete CP/M
file specification.

filetype: Extension to a filename. A filetype can be from 0 to 3 characters and must be
separated from the primary filename by a period. A filetype can tell something about the
file. Some programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store information. Floppy disks come in 5%-
and 8-inch diameters.

FSC: Parameter in the diskdef macro library specifying the first physical sector number.
This parameter is used to determine SPT and build XLT.

hard disk: Rigid, platter-like, magnetic disk sealed in a container. A hard disk stores more
information than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal digits and letters A,
B, C, D, E & F to represent the 16 digits. Hexadecimal notation is often used to refer to
binary numbers. A binary number can be easily expressed as a hexadecimal value by
taking the bits in groups of 4 starting with the least significant bit, and expressing each
group as a hexadecimal digit, (0-F). Thus the bit value 1011 becomes 0BH and 10110101
becomes 0BSH.

hex file: ASClI-printable representation of a command (machine language) file.
hex file format: Absolute output of ASM and MAC for the Intel 8080 is a hex format file,
containing a sequence of absolute records that give a load address and byte values to be

stored, starting at the load address.

HOME: BIOS entry point which sets the disk head of the currently selected drive to the
track zero position.

host: Physical characteristics of a hard disk drive in a system using the blocking and
deblocking algorithm. The term “host” helps distinguish physical hardware characteris-

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 227

tics from CP/M’s logical characteristics. For example, CP/M sectors are always 128 bytes,
although the host sector size may be a multiple of 128 bytes.

input: Data going into the computer, usually from an operator typing at the terminal or
by a program reading from the disk.

input/output: See 1/0.

interface: Object that allows two independent systems to communicate with each other,
as an interface between hardware and software in a microcomputer.

1/0: Abbreviation for input/output. Usually refers to input/output operations or rou-
tines handling the input and output of data in the computer system.

IOBYTE: A one byte field in page zero, currently at location 0003H, that can support a
logical-to-physical device mapping for 1/O. However, its implementation in your BIOS is
purely optional and may or may not be supportedina given CP/Msystem. The IOBYTE is
easily set using the command:

STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, AND LST:; each of these can be
assigned to one of four physical devices. The IOBYTE may be initialized by the BOOT
entry point of the BIOS and interpreted by the BIOS /O entry points CONST, CONIN,
CONOUT, LIST, PUNCH, and READER. Depending on the setting of the IOBYTE,
different I/O drivers may be selected by the BIOS. For example, setting LST:=TTY: might
cause LIST output to be directed to a serial port, while setting LST:=LPT: causes LIST
output to be directed to a parallel port.

K: Abbreviation for kilobyte. See kilobyte.
keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytes of memory. This is a standard unit of memory.
For example, the Intel 8080 supports up to 64K of memory address space or 65,536 bytes.
1024 kilobytes equal one megabyte, or over one million bytes.

linker: Utility program used to combine relocatable object modules into an absolute file
ready for execution. For example, LINK-80 creates either a COM or PRL file from
relocatable REL files, such as those produced by PL/I-80.

LIST: A BIOS entry point to a routine that sends a character to the list device, usually a
printer.

list device: Device such as a printer onto which data can be listed or printed.

LISTST: BIOS entry point to a routine that returns the ready status of the list device

loader: Utility program that brings an absolute program image into memory ready for
execution under the operating system, or a utility used to make such an image. For
example, LOAD prepares an absolute COM file from the assembler hex file output which
is ready to be executed under CP/M.

logged in: Made known to the operating system, in reference to drives. A driveis logged
in when it is selected by the user or an executing process. It remains selected or logged in
until you change disks in a floppy disk drive or enter ctl-C at the command level, or untila
BDOS function 0 is executed.

228 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

logical: Representation of something that may or may not be the same in its actual
physical form. For example, a hard disk can occupy one physical drive, yet you can divide
the available storage on it to appear to the user as if it were in several different drives.
These apparent drives are the logical drives.

logical sector: See sector.
logical to physical sector translation table: See XLT.
LSC: Diskdef macro library parameter specifying the last physical sector number.

LST: Logical CP/M list device (usually a printer). The CP/M list device is an output-only
device referenced through the LIST and LISTST entry points of the BIOS. The STAT
command allows assignment of LST: to one of the physical devices: TTY:, CRT:,LPT:, or
UL1:, provided these devices and the IOBYTE are implemented in the LIST and LISTST
entry points of your CP/M BIOS module. The CP/NET command NETWORK allows
assignment of LST: to a list device on a network master. An example of how LST:is used
in a command: PIP LST:=TEST.SUB prints the file TEST.SUB on the list device.

macro assembler: Assembler code translator providing macro processing facilities.
Macro definitions allow groups of instructions to be stored and substituted in the source
program as the macro names are encountered. Definitions and invocations may be nested
and macro parameters can be formed to pass arbitrary strings of text to a specific macro
for substitution during expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, kilobyte.

microprocessor: Silicon chip that is the central processing unit (CPU) of the microcom-
puter. The Intel 8080 and the Zilog Z-80 are microprocessors commonly used in CP/M
systems.

MOVCPM image: Memory image of the CP/M system created by MOVCPM. This image
may be saved as a disk file using the SAVE command or placed on the system tracks using
the SYSGEN command without specifying a source drive. This image varies, depending
on the presence of a one-sector or two-sector boot. If the boot is less than 128 bytes (one
sector), the boot begins at 0900H, the CP/M system at 0980H, and the BIOS at 1F80H.
Otherwise, the boot is at 0900H, the CP/M system at 1000H, and the BIOS at 2000H.In a
CP/M 1.4 system with a one-sector boot, the addresses are the same as for the CP/M 2
system—except that the BIOS begins at 1E80H instead of 1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer operating sys-
tem supporting multi-terminal access with multi-programming at each terminal.

multi-programming: The capability of initiating and executing more than one program
at a time. These programs, usually called processes, are time-shared, each receiving a slice
of CPU time on a “round-robin” basis. See concurrency.

nibble: One half of a byte, usually the high order or low order 4 bits in a byte.

OFF: Two byte parameter in the disk parameter block at DPB + 13 bytes. This value
specifies the number of reserved system tracks. The disk directory begins in the first

sector of track OFF.

OFS: Diskdef macro library parameter specifying the number of reserved system tracks.
See OFF.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 229

operating system: Collection of programs that supervises the execution of other pro-
grams and the management of computer resources. An operating system provides an
orderly input/output environment between the computer and its peripheral devices. It
enables user-written programs to execute safely. An operating system standardizes the
use of computer resources for the programs running under it.

option: One of many parameters that can be part of a command tail. Use options to
specify additional conditions for a command’s execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary, whose base
address is a multiple of 256 (100H) bytes. In hex notation, pages always begin at an
address with a least significant byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000H and 0100H used to hold critical system
parameters. Page zero functions primarily as an interface region between user programs
and the CP/M BDOS module. Note: in non-standard systems this region is the base page
of the system and represents the first 256 bytes of memory used by the CP/M system and
user programs running under it.

parameter: Value in the command tail that provides additional information for the
command. Technically, a parameter is a required element of a command.

peripheral devices: Devices external to the CPU. For example, terminals, printers, and
disk drives are common peripheral devices that are not part of the processor but are used
in conjunction with it.

physical: Characteristic of computer components, generally hardware, that actually
exist. In programs, physical components can be represented by logical components.

primary filename: First 8 characters of a filename. The primary filename is a unique
name that helps the user identify the file contents. A primary filename contains 1 to 8
characters and can include any letter or number and some special characters. The primary
filename follows the optional drive specification and precedes the optional filetype.

PRL: Page relocatable program. A page relocatable program is stored on diskette as a file
of type PRL. Page relocatable programs are easily relocated to any page boundary and
thus are suitable for execution in a non-banked MP/M system.

program: Series of coded instructions that performs specific tasks when executed by a
computer. A program can be written in a processor-specific language or a high-level
language that can be implemented on a number of different processors.

prompt: Any characters displayed on the video screen to help the user decide what the
next appropriate action is. A system prompt is a special prompt displayed by the operating
system. See CP/M prompt. The alphabetic character indicates the default drive. Some
applications programs have their own special prompts.

PUN: Logical CP/M punch device. The punch device is an output-only device accessed
through the PUNCH entry point of the BIOS. In certain implementations, PUN: can be a
serial device such as a modem.

PUNCH: BIOS entry point to a routine that sends a character to the punch device.

230 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RDR: Logical CP/M reader device. The reader device is an input-only device accessed
through the READER entry point in the BIOS. See PUN:.

READ: Entry point in the BIOS to a routine that reads 128 bytes from the currently
selected drive, track, and sector into the current DMA address.

READER: Entry point to a routine in the BIOS that reads the next character from the
currently assigned reader device.

read-only (R O): Attribute that can be assigned to a disk file or a disk drive. When
assigned to a file, the read-only attribute allows you to read from that file but not write to
it. When assigned to a drive, the read-only attribute allows you to read any file on the disk,
but prevents you from adding a new file, erasing or changing a file, renaming a file, or
writing on the disk. The STAT command can set a file or a drive to read-only. Every file
and drive is either read-only or read-write. The default setting for drives and files is
read-write, but an error in resetting the disk or changing media automatically sets the
drive to read-only until the error is corrected. See also ROM.

read-write (R W): Attribute that can be assigned to a disk file or a disk drive. The
read-write attribute allows you to read from and write to a specific read-write file or to
any file on a disk that is in a drive set to read-write. A file or drive can be set to either
read-only or read-write.

record: Group of bytes in a file. A physical record consists of 128 bytes and is the basic
unit of data transfer between the operating system and the application program. A logical
record may vary in length and is used to represent a unit of information. Two 64 byte
“employee” records can be stored in one 128-byte physical record. Records are grouped
together to form a file.

recursive procedure: Code that may call itself during execution.

reentrant procedure: Code that can be called by one process while another is already
executing it. Thus, reentrant code may be shared between different users. Reentrant
procedures must not be self-modifying; that is, they must be pure code and not contain
data. The data for reentrant procedures can be kept in a separate data area or placed on
the stack.

restart (RST): One-byte call instruction usually used during interrupt sequences and for
debugger break pointing. There are eight restart locations, RST 0 through RST 7, whose
addresses are given by the product of 8 times the restart number.

RO: See read-only.

ROM: Read-only memory. This memory can be read but not written and so is suitable for
code and preinitialized data areas only.

RST: See restart.
RW: See read-write.

sector: In a CP/M system, a sector is always 128 consecutive bytes. A sector is the basic
unit of data read and written on the disk by the BIOS. A sector can be one 128-byte record
in a file or a sector of the directory. The BDOS always requests a logical sector number
between 0°and (SPT-1). This is typically translated into a physical sector by the BIOS
entry point SECTRAN. In some disk subsystems, the disk sector size is larger than 128
bytes, usually a power of two such as 256, 512, 1024 or 2048 bytes. These disk sectors are

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 231

always referred to as host sectors in CP/M documentation and should not be confused
with other references to sectors, in which cases the CP/M 128 byte sectors should be
assumed. When the host sector size is larger than 128 bytes, host sectors must be
buffered in memory and the 128 byte CP/M sectors must be blocked and deblocked from
them. This may be done by adding an additional module, the blocking and deblocking
algorithm, between the BIOS disk I/O routines and the actual disk 1/O.

sectors per track (SPT): A two byte parameter in the disk parameter block at DPB + 0.
The BDOS makes calis to the BIOS entry point SECTRAN with logical sector numbers
ranging between 0 and (SPT - 1) in register BC.

SECTRAN: Entry point to a routine in the BIOS that performs logical to physical sector
translation for the BDOS.

SELDSK: Entry point to a routine in the BIOS that sets the currently selected drive.

SETDMA: Entry point to a routine in the BIOS that sets the currently selected DMA
address. The DMA address is the address of a 128-byte buffer region in memory that is
used to transfer data to and from the disk in subsequent reads and writes.

SETSEC: Entry point to a routine in the BIOS that sets the currently selected sector.
SETTRK: Entry point to a routine in the BIOS that sets the currently selected track.

skew factor: Factor that defines the logical to physical sector number translation in XLT.
Logical sector numbers are used by the BDOS and range between 0 and (SPT-1). Data is
written in consecutive logical 128-byte sectors grouped in data blocks. The number of
sectors per block is given by BLS/128. Physical sectors on the disk media are also
numbered consecutively. If the physical sector size is also 128 bytes, a one-to-one
relationship exists between logical and physical sectors. The logical to physical translation
table (XLT) maps this relationship, and a skew factor is typically used in generating the
table entries. For instance, if the skew factor is 6, XLT will be:

25
22

Logical: 0 1 2 3 4 5
Physical: 1 7 13 19 25 5 1

4 O\

The skew factor allows time for program processing without missing the next sector.
Otherwise, the system must wait for an entire disk revolution before reading the next
logical sector. The skew factor can be varied, depending on hardware speed and applica-
tion processing overhead. Note that no sector translation is done when the physical
sectors are larger than 128 bytes, as sector deblocking is done in this case. (See also sector,
SKF and XLT)

SKF: A diskdef macro library parameter specifying the skew factor to be used in building
XLT. If SKF is zero, no translation table is generated and the XLT byte in the DPH will be
0000H.

software: Programs that contain machine-readable instructions, as opposed to hardware,
which is the actual physical components of a computer.

source file: ASCII text file usually created with an editor, which is an input file to a
system program such as a language translator or text formatter.

SP: Stack pointer. See stack.

232 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

spooling: Process of accumulating printer output in a file while the printer is busy. The
file is printed when the printer becomes free; a program does not have to wait for the slow
printing process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return address when a
call instruction is received. When a return instruction is encountered, the processor
restores the current address on the stack to the program counter. Data such as the
contents of the registers can also be saved on the stack. The push instruction places data
on the stack and the pop instruction removes it. An item is pushed onto the stack by
decrementing the stack pointer (SP) by 2 and writing the item at the SP address. In other
words, the stack grows downward in memory.

syntax: Format for entering a given command.

SYS: See system attribute.

SYSGEN image: Memory image of the CP/M system created by SYSGEN when a
destination drive is not specified. This is the same as the MOVCPM image, which can be
read by SYSGEN if a source drive is not specified. See MOVCPM image.

system attribute (SYS): File attribute. You can give a file the system attribute by using
the SYS option in the STAT command or by using the set file attributes function (BDOS
function 12). A file with the SYSattribute is not displayed in response to a DIR command.
If you give a file with user number 0 the SYS attribute, you can read and execute that file
from any user number on the same drive. Use this feature to make your commonly used
programs available under any user number.

system prompt: Symbol displayed by the operating system indicating that the system is
ready to receive input. See prompt, CP/M prompt.

system tracks: Tracks reserved on the disk for the CP/M system. The number of system
tracks is specified by the parameter OFF in the disk parameter block (DPB). The system
tracks for a drive always precede its data tracks. The command SYSGEN copies the CP/M
system from the system tracks to memory, and vice versa. The standard SYSGEN utility
copies 26 sectors from track 0 and 26 sectors from track 1. When the system tracks
contain additional sectors or tracks to be copied, a customized SYSGEN must be used.

terminal: See console.

TPA: Transient program area. Area in memory where user programs run and store data.
This area is a region of memory beginning at 0100H and extending to the base of the
CP/M system in high memory. The first module of the CP/M system is the CCP, which
may be overwritten by a user program. If so, the TPA is extended to the base of the CP/M
BDOS module. If the CCP is overwritten, the user program must terminate with either a
system reset (function 0) call or a jump to location zero in page zero. The address of the
base of the CP/M BDOS is stored in location 0006H in page zero, least significant byte
first.

track: Data on the disk media is accessed by combination of track and sector numbers.
Tracks form concentric rings on the disk; the standard IBM single-density diskettes
have 77 tracks. Each track consists of a fixed number of numbered sectors. Tracks are

numbered from 0 to one less than the number of tracks on the disk.

transient program area: See TPA.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 233

upward compatible: Term meaning that a program created for the previously released
operating system (or compiler, etc.) runs under the newly released version of the same
operating system.

USER: Term used in CP/M and MP/M systems to distinguish distinct regions of the
directory.

user number: Number assigned to files in the disk directory so that different users need
only deal with their own files and have their “own” directories, even though they are all
working from the same disk. In CP/M, files can be divided into 16 user groups.

utility: “Tool.” Program that enables the user to perform certain operations, such as
copying files, erasing files, and editing files. The utilities are created for the convenience
of programmers and users.

vector: Location in memory. An entry point into the operating system used for making
system calls or interrupt handling.

warm start: Program termination by: aiump to the warm start vector at location 0000H, a

system reset (BDOS function 0), or a ctl-C typed at the keyboard. A warm start
reinitializes the disk subsystem and returns control to the CP/M operating system at the
CCP level. The warm start vector is simply a jump to the WBOOT entry point in the
BIOS.

WBOOT: Entry point to a routine in the BIOS used when a warm start occurs. A warm
start is performed when a user program branches to location 0000H, when the CPU is
reset from the front panel, or when the user types ctl-C. The CCP and BDOS are reloaded
from the system tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/M
there are two wildcard characters: ? and *. The ? can be substituted for any single
character in a filename, and the * can be substituted for the primary filename or the
filetype, or both. By placing wildcard characters in filenames, the user creates an ambigu-
ous filename and can quickly reference one or more files.

word: 16-bit or two-byte value, such as an address value. Although the Intel 8080 is an
8-bit CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to a routine in the BIOS that writes the record at the currently
selected DMA address to the currently selected drive, track, and sector.

XLT: Logical to physical sector translation table located in the BIOS. SECTRAN uses
XLT to perform logical to physical sector number translation. XLT also refers to the
two-byte address in the disk parameter header at DPBASE + 0. If this parameter is zero,
no sector translation takes place. Otherwise this parameter is the address of the transla-
tion table.

ZERO PAGE: See page zero.

234 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix I: CP/M Messages

Messages come from several different sources. CP/M displays error messages when
there are errors in calls to the Basic Disk Operating System (BDOS). CP/M also displays
messages when there are errors in command lines. Each utility supplied with CP/M has its
own set of messages. The following lists CP/M messages and utility messages. One might
see messages other than those listed here if one is running an application program. Check
the application program’s documentation for explanations of those messages.

Message
?

Meaning

DDT. This message has four possible meanings:

1) DDT does not understand the assembly language instruction.
2) The file cannot be opened.

3) A checksum error occurred in a HEX file.

4) The assembler/disassembler was overlayed.

ABORTED

PIP. You stopped a PIP operation by pressing a key.

ASM Error Messages

D Data error: data statement element cannot be placed in
specified data area.

E Expression error: expression cannot be evaluated during
assembly.

L Label error: label cannot appear in this context (might be
duplicate label).

N Not implemented: unimplemented features, such as macros,
are trapped.

O Overflow: expression is too complex to evaluate.

P Phase error: label value changes on two passes through
assembly.

R Register error: the value specified as a register is incompatible
with the code.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 235

the nex riie.

Syntax error: improperly formed expression.

Undefined label: label used does not exist.

Value error: improperly formed operand encountered in an
expression.

<Cw

BAD DELIMITER
STAT. Check command line for typing errors.

Bad Load

CCP error message, or SAVE error message.

Bdos Err On d:

Basic Disk Operating System Error on the designated drive: CP/M
replaces d: with the drive specification of the drive where the error
occurred. This message is followed by one of the four phrases in the
situations described below.

Bdos Err On d: Bad Sector

This message appears when CP/M finds no disk in the drive, when
the disk is improperly formatted, when the drive latch is open, or
when power to the drive is off. Check for one of these situations
and try again. This could also indicate a hardware problem or a
worn or improperly formatted disk. Press 1C to terminate the
program and return to CP/M, or press the return key to ignore the
error.

Bdos Err On d: File R/O

You tried to erase, rename, or set file attributes on a Read-Only file.
The file should first be set to Read-Write (RW) with the command:
“STAT filespec $RIW.”

Bdos Err On d: R/O

Drive has been assigned Read Only status with a STAT command,
or the disk in the drive has been changed without being initialized
with a 1C. CP/M terminates the current program as soon as you
press any key.

Bdos Err on d: Select

CP/M received a command line specifying a nonexistent drive.
CP/M terminates the current program as soon as you press any key.
Press return key or CTRL-C to recover.

Break “x” at ¢

ED. “x” is one of the symbols described below and cis the command
letter being executed when the error occurred.

Search failure. ED cannot find the string specified inanF, S, or
N command.

? Unrecognized command letter c. ED does not recognize the
indicated command letter, or an E, H, Q, or O command is not
alone on its command line.

236 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

o

The file specified in an R command cannot be found.

> Buffer full. ED cannot put any more characters in the memory
buffer, or the string specified in an F, N, or S command is too
long.

E Command aborted. A keystroke at the console aborted
command execution.

F Disk or directory full. This error is followed by either the disk
or directory full message. Refer to the recovery procedures
listed under these messages.

CANNOT CLOSE DESTINATION FILE— {filespec}

Cannot close, R/O

PIP. An output file cannot be closed. You should take appropriate
action after checking to see if the correct disk is in the drive and that
the disk is not write-protected.

CANNOT CLOSE FILES

CANNOT READ

CANNOT WRITE

Checksum error

CP/M cannot write to the file. This usually occurs because the disk
is write-protected.

ASM. An output file cannot be closed. This is a fatal error that
terminates ASM execution. Check to see that the disk is in the
drive, and that the disk is not write-protected.

DDT. The disk file written by a W command cannot be closed. This
is a fatal error that terminates DDT execution. Check if the correct
disk is in the drive and that the disk is not write-protected.

SUBMIT. This error can occur during SUBMIT file processing.
Check if the correct system disk is in the A drive and that the disk is
not write-protected. The SUBMIT job can be restarted after
rebooting CP/M.

PIP. PIP cannot read the specified source. Reader may not be
implemented.

PIP. The destination specified in the PIP command is illegal. You
probably specified an input device as a destination.

PIP. A hex record checksum error was encountered. The hex record

that produced the error must be corrected, probably by recreating
the hex file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh

BYTES READ:
hhhh:

LOAD. File contains incorrect data. Regenerate hex file from the
source.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 237

Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to 2048 characters in the
input file.

Command too long

SUBMIT. A command in the SUBMIT file cannot exceed 125
characters.

CORRECT ERROR, TYPE RETURN OR CTL-Z

PIP. A hex record checksum was encountered during the transfer of
a hex file. The hex file with the checksum error should be corrected,
probably by recreating the hex file.

DESTINATION IS R/O, DELETE (Y/N)?

PIP. The destination file specified in a PIP command already exists
and it is Read Only. If you type Y, the destination file is deleted
before the file copy is done.

Directory full

ED. There is not enough directory space for the file being written to
the destination disk. You can use the OXfilespec command to erase
any unnecessary files on the disk without leaving the editor.

SUBMIT. There is not enough directory space to write the
$$%.SUB file used for processing SUBMITs. Erase some files or
select a new disk and retry.

Disk full

ED. There is not enough disk space for the output file. This error
can occur on the W, E, H, or X commands. If it occurs with X
command, you can repeat the command prefixing the filename with
a different drive.

DISK READ ERROR— {filespec}

PIP. The input disk file specified in a PIP command cannot be read
properly. This is usually the result of an unexpected end-of-file.
Correct the problem in your file.

DISK WRITE ERROR— {filespec}

DDT. A disk write operation cannot be successfully performed
during a W command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space.

PIP. A disk write operation cannot be successfully performed dur-
ing a PIP command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space
and execute PIP again.

SUBMIT. The SUBMIT program cannot write the $$$.SUB file to
the disk. Erase some files, or select a new disk and try again.

ERROR: BAD PARAMETER

PIP. You entered an illegal parameter in a PIP command. Retype the
entry correctly.

238 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Displayed if LOAD cannot find the specified file or if no
filename is specified.

CANNOT CLOSE FILE, LOAD ADDRESS hhhh
LOAD. Caused by an error code returned by a BDOS function call.
Disk may be write-protected.

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Cannot find source file. Check disk directory.

DISK READ, LOAD ADDRESS hhhh
LOAD. Caused by an error code returned by a BDOS function call.

DISK WRITE, LOAD ADDRESS hhhh
LOAD. Destination Disk is full.

INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far from the address of the
previously-processed record. This is an internal limitation of
LOAD, but it can be circumvented. Use DDT to read the hexfile
into memory, then use a SAVE command to store the memory
image file on disk.

NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh
LOAD. Disk directory is full.

Error on line nnn message

SUBMIT. The SUBMIT program displays its messages in the for-
mat shown above, where nnn represents the line number of the
SUBMIT file. Refer to the message following the line number.

FILE ERROR
ED. Disk or directory is full, and ED cannot write anything more on
the disk. This is a fatal error, so make sure there is enough space on
the disk to hold a second copy of the file before invoking ED.
FILE EXISTS

You have asked CP/M to create or rename a file using a file specifi-
cation that is already assigned to another file. Either delete the
existing file or use another file specification.

REN. The new name specified is the name of a file that already
exists. You cannot rename a file with the name of an existing file. If
you want to replace an existing file with a newer version of the
same file, either rename or erase the existing file, or use the PIP
utility.

File exists, erase it

ED. The destination filename already exists when you are placing
the destination file on a different disk than the source. It should be
erased or another disk selected to receive the output file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 239

** FILE IS READ/ONLY **

ED. The file specified in the command to invoke ED has the Read
Only attribute. ED can read the file so that the user can examine it,
but ED cannot change a Read Only file.

File Not Found

CP/M cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

ED. ED cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

STAT. STAT cannot find the specified file. The message might
appear if you omit the drive specification. Check to see if the correct
disk is in the drive.

FILE NOT FOUND— {filespec}
PIP. An input file that you have specified does not exist.

Filename required

ED. You typed the ED command without a filename. Reenter the
ED command followed by the name of the file you want to edit or
create.

hhhh??=dd

DDT. The ?? indicates DDT does not know how to represent the
hexadecimal value dd encountered at address hhhh in 8080 assem-
bly language. dd is not an 8080 machine instruction opcode.

Insufficient memory

DDT. There is not enough memory to load the file specified in anR
or E command.

Invalid Assignment

STAT. You specified an invalid drive or file assignment, or miss-
pelled a device name. This error message might be followed by a list
of the valid file assignments that can follow a filename. If an invalid
drive assignment was attempted the message “Use: d:=RO” is dis-
played, showing the proper syntax for drive assignments.

Invalid control character

SUBMIT. The only valid control characters in the SUBMIT files of
type SUB are ~ A through = Z. Note that in a SUBMIT file the
control character is represented by typing the circumflex, , not
by pressing the control key.

INVALID DIGIT— {filespec}

PIP. An invalid hex digit has been encountered while reading a hex
file. The hex file with the invalid hex digit should be corrected,
probably by recreating the hex file.

240 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Invalid Disk Assignment
STAT. Might appear if you follow the drive specification with
anything except =R/O.

INVALID DISK SELECT

CP/M received a command line specifying a nonexistent drive, or
the disk in the drive is improperly formatted. CP/M terminates the
current program as soon as you press any key.

INVALID DRIVE NAME (Use A, B, C, or D)

SYSGEN. SYSGEN recognizes only drives A, B, C and D as valid
destinations for system generation.

Invalid File Indicator
STAT. Appears if you do not specify RO, RW, DIR, or SYS.

INVALID FORMAT

PIP. The format of your PIP command is illegal. See the description
of the PIP command.

INVALID HEX DIGIT
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:

hhhh

LOAD. File contains incorrect hex digit.

INVALID MEMORY SIZE

MOVCPM. Specify a value less than 64K or your computer’s actual
memory size.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator between
two input filenames.

INVALID USER NUMBER

PIP. You have specified a user number greater than 15. User
numbers are in the range 0 to 15.

n?

USER. You specified a number greater than fifteen for a user area
number. For example, if you type USER 18<cr>, the screen displays
187.

NO DIRECTORY SPACE

ASM. The disk directory is full. Erase some files to make room for
PRN and HEX files. The directory can usually hold only 64 file-
names.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 241

NO DIRECTORY SPACE— {filespec}

PIP. There is not enough directory space for the output file. You
should either erase some unnecessary files or get another disk with
more directory space and execute PIP again.

NO FILE— {filespec}

DIR, ERA, REN, PIP. CP/M cannot find the specified file, or no
files exist.

ASM. The indicated source or include file cannot be found on the
indicated drive.

DDT. The file specified in an R or E command cannot be found on
the disk.

NO INPUT FILE PRESENT ON DISK
DUMP. The file you requested does not exist.

No memory

There is not enough (buffer?) memory available for loading the
program specified.

NO SOURCE FILE ON DISK

SYSGEN. SYSGEN cannot find CP/M either in CPMxx.com form
or on the system tracks of the source disk.

NO SOURCE FILE PRESENT

ASM. The assembler cannot find the file you specified. Either you
mistyped the filespecification in your command line, or the file is
not type ASM.

NO SPACE

SAVE. Too many files are already on the disk, or no room is left on
the disk to save the information.

No SUB file present
SUBMIT. For SUBMIT to operate properly, you must create a file
with filetype of SUB. The SUB file contains usual CP/M commands.
Use one command per line.

NOT A CHARACTER SOURCE

PIP. The source specified in your PIP command is illegal. You have
probably specified an output device as a source.

** NOT DELETED **

PIP. PIP did not delete the file, which may have had the R/O
attribute.

NOT FOUND
PIP. PIP cannot find the specified file.

242 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

OUTPUT FILE WRITE ERROR
ASM. You specified a write-protected diskette as the destination
for the PRN and HEX files, or the diskette has no space left. Correct
the problem before assembling your program.

Parameter error
SUBMIT. Within the SUBMIT file of type sub, valid parameters are
$0 through $9.

PARAMETER ERROR, TYPE RETURN TO IGNORE
SYSGEN. If you press return, SYSGEN proceeds without process-
ing the invalid parameter.

QUIT NOT FOUND
PIP. The string argument to a Q parameter was not found in your
input file.

Read error

TYPE. An error occurred when reading the file specified in the type
command. Check the disk and try again. The STAT filespec com-
mand can diagnose trouble.

READER STOPPING

PIP. Reader operation interrupted.

Record Too Long
PIP. PIP cannot process a record longer than 128 bytes.

Requires CP/M 2.0 or later
XSUB. XSUB requires the facilities of CP/M 2.0 or newer version.

Requires CP/M 2.0 or newer for operation
PIP. This version of PIP requires the facilities of CP/M 2.0 or newer
version.

START NOT FOUND

PIP. The string argument to an S parameter cannot be found in the
source file.

SOURCE FILE INCOMPLETE
SYSGEN. SYSGEN cannot use your CP/M source file.

SOURCE FILE NAME ERROR

ASM. When you assemble a file, you cannot use the wildcard
characters * and ? in the filename. Only one file can be assembled at
a time.

SOURCE FILE READ ERROR

ASM. The assembler cannot understand the information in the file

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 243

containing the assembly language program. Portions of another file
might have been written over your assembly language file, or
information was not properly saved on the diskette. Use the TYPE
command to locate the error. Assembly language files contain the
letters, symbols, and numbers that appear on your keyboard. If
your screen displays unrecognizable output or behaves strangely,
you have found where computer instructions have crept into your

file.

SYNCHRONIZATION ERROR
MOVCPM. The MOVCPM utility is being used with the wrong
CP/M system.

“SYSTEM” FILE NOT ACCESSIBLE
You tried to access a file set to SYS with the STAT command.

** TOO MANY FILES **
STAT. There is not enough memory for STAT to sort the files
specified, or more than 512 files were specified.

UNEXPECTED END OF HEX FILE—({filespec}

PIP. An end-of-file was encountered prior to a termination hex
record. The hex file without a termination record should be cor-
rected, probably by recreating the hex file.

Unrecognized Destination

PIP. Check command line for valid destination.

Use: STAT d:=RO
STAT. An invalid STAT drive command was given. The only valid
drive assignment in STAT is STAT d:=RO.

VERIFY ERROR:—{filespec}

PIP. When copying with the V option, PIP found a difference when
rereading the data just written and comparing it to the data in its
memory buffer. Usually this indicates a failure of either the destina-
tion disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSUB ACTIVE
SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT
SUBMIT. XSUB is already active in memory.

Your input?

If CP/M cannot find the command you specified, it returns the
command name you entered followed by a question mark. Check
that you have typed the command line correctly, or that the com-
mand you requested exists asa .COM file on the default or specified
disk.

244 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

INDEX

Absolute line number, 36

Access mode, 13

afn (ambiguous file reference), 3, 4, 6
Allocation vector, 105

Ambiguous file reference (afn), 3, 4, 6
ASM, 15, 47

Assembler, 15, 47

Assembler/disassembler module (DDT), 77
Assembly errors, 62

Assembly language mnemonics in DDT, 71, 74
Assembly language program, 49

Assembly language statement, 49
Automatic command processing, 25

Base, 50

Basic Disk Operating System (BDOS), 2, 89, 127
Basic I/O System (BIOS), 2, 89, 127

BDOS (Basic Disk Operating System), 2, 89, 127
Binary constants, 50

BIOS (Basic 1/O System), 2, 89, 127

BIOS disk definition, 148

BIOS subroutines, 137

Block move command, 74

bls parameter, 149

BOOT, 90, 136, 140

BOOT entry point, 140

Breakpoint, 71, 73

Built-in commands, 3

Case translation, 5, 6, 20, 21, 37, 39, 44, 45, 51, 95
CCP (Console Command Processor), 2, 69, 89, 127
CCP Stack, 92

Character pointer, 35

CKS parameter, 149

Close File function, 101

Code and data areas, 144

Cold start loader, 136, 140, 143

Combine files, 17

Command, 3

Command line, 90

Comment field, 49

Compute File Size function, 108

Condition flags, 58, 77

Conditional assembly, 56

CONIN, 140

CONOWUT, 141

CONSOLE, 138

Console Command Processor (CCP), 2,69, 89, 127
Console Input function, 95

Console Output function, 96

CONST, 140

Constant, 50

Control characters, 44

Control functions, 9

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

245

Control-Z character, 93

Copy files, 17

CPU state, 71

cr (carriage return), 39

Create files, 23

Create system disk, 24

Creating COM files, 16

Currently logged disk, 3, 5, 10, 17, 25

Data allocation size, 147
Data block number, 147
DB statement, 57

DDT commands, 70, 133
DDT nucleus, 77

DDT prompt, 70

DDT sign-on message, 69
Decimal constant, 50
Default FCB, 73

Delete File function, 102
DESPOOL, 138

Device assignment, 11
DIR, 6

DIR attribute, 14

dir parameter, 149

Direct console I/O function, 97
Direct Memory Address, 104
Directory, 6

Directory code, 100, 101, 102, 103
Disassembler, 71, 77

Disk attributes, 11

Disk drive name, 5

Disk I/O functions, 99-110
Disk parameter block, 146
Disk parameter header, 145
Disk parameter table, 145
Disk statistics, 10
Disk-to-disk copy, 18
DISKDEF macro, 149
Diskette format, 31
DISKS macro, 150, 186
Display file contents, 8
dks parameter, 149

DMA, 104

DMA address, 93

dn parameter, 149
DPBASE, 146

Drive characteristics, 14
Drive select code, 94
Drive specification, 5

DS statement, 57

DUMP, 27, 113

DW statement, 57

ED, 23, 33-45, 131

ED commands, 38, 44
ED errors, 43

Edit command line, 9
8080 CPU registers, 76
8080 registers, 51
end-of-file, 19, 93
END statement, 49, 54
ENDEF macro, 150
ENDIF statement, 56
EQU statement, 55

246 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ERA, 6

Erase files, 6

Error messages, 29, 43, 62, 153
Expression, 49

Extents, 13

FBASE, 89

FCB, 93, 94

FCB format, 93, 94
FDOS (operations), 89, 91
File attributes, 14

File compatibility, 23

File control block (FCB), 93, 94
File expansion, 128

File extent, 93

File indicators, 14

File names, 3

Fiel reference, 3

File statistics, 10, 13
Filetype, 93

Find command, 39

fsc parameter, 149

Get ADDR (Alloc) function, 105

Get ADDR (Disk Parms) function, 106
Get Console Status, 99

Get 1/O Byte function, 97

Get Read/Only Vector function, 105
GETSYS, 128, 134

Hexadecimal constant, 50
Hex files, 16, 19, 20, 47
HOME subroutine, 139, 141

Identifier, 49, 50

IF statement, 56

Initialized storage areas, 57
In-line assembly language, 71
Insert mode, 37

Insert string, 40

IOBYTE function, 138,139

Jump vector, 137
Juxtaposition command, 41

Key fields, 109

Label field, 49

Labels, 48, 49, 58

Library read command, 42

Line-editing control characters, 38, 70, 98
Line-editing functions, 9

Line numbers, 36

LIST, 138, 141

List Output function, 96

LISTST, 142

LOAD, 16

Logged in, 3

Logical devices, 11, 18, 138

Logical extents, 93

Logical-physical assignments, 12, 139
Logical to physical device mapping, 138
Logical to physical sector translation, 143, 149
Isc parameter, 149

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

247

Machine executable code, 16
Macro command, 42

Make File function, 103

Memory buffer, 33, 34, 35, 37
Memory image, 71, 131, 132
Memory image file, 16

Memory size, 27, 128, 132
MOVCPM, 27, 131, 132
Multiple command processing, 25

Negative bias, 132

[o] parameter, 149
Octal constant, 50

ofs parameter, 150
On-line status, 100
Open File function, 100
Operand field, 49-51
Operation field, 49-58
Operators, 52, 53, 58
ORG directive, 54

Page zero, 144

Patching the CP/M system, 128
Peripheral devices, 138
Physical devices, 12, 18, 139
Physical file size, 109

Physical to logical device assignment, 12, 139
PIP, 17

PIP devices, 19

PIP parameters, 20

Print String function, 98

PRN file, 47

Program counter, 71, 73, 76
Program tracing, 75

Prompt, 3

Pseudo-operation, 53

PUNCH, 138, 141

Punch Output function, 96
PUTSYS, 129, 135

Radix indicators, 50

Random access, 107, 108, 117
Random access files, 93

Random record number, 108
READ, 142

Read Console Buffer function, 98
Read only, 14

Read/only status, 14

Read random error codes, 107
Read Random function, 107

READ routine, 139

Read Sequential function, 102
Read/write, 14

READER, 138, 141

Reader Input function, 96

REN, 7

Rename file function, 104

Reset Disk function, 99

Reset Drive function, 109

Reset state, 99

Return Current Disk function, 104
Return Log-in Vector function, 104
Return Version Number function, 99
R/O, 14

248 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

R/O attribute, 106
R/O bit, 105
RIW, 14

SAVE, 7

SAVE command, 70

Search for First function, 101
Search for Next function, 102
Search strings, 39

Sector allocation, 136
SECTRAN, 143

SELDSK, 139, 141, 146

Select Disk function, 100
Sequential access, 93

Set DMA address function, 104
Set File Attributes function, 106
Set/Get User Code function, 106
Set I/O Byte function, 97

Set Random Record function, 109
SET statement, 55

SETDMA, 142

SETSEC, 142

SETTRK, 141

Simple character 1/0, 138

Size in records, 13

skf parameter, 149, 150

Source files, 93

Stack pointer, 92

STAT, 10, 139, 151

Stop console output, 9

String substitutions, 40
SUBMIT, 25

SYS attribute, 14

SYSGEN, 24, 134

System attribute, 44, 106
System parameters, 140
System (re)initialization, 138
System Reset function, 95

Testing and debugging of programs, 69
Text transfer commands, 35

TPA (Transient Program Area), 2, 89
Trace mode, 76

Transient commands, 3, 9

Transient Program Area (TPA), 2, 89
Translate table, 150

Translation vectors, 146

TYPE, 8

ufn, 3, 6

Unambiguous file reference, 3, 6
Uninitialized memory, 57
Untrace mode, 76

USER, 8

USER numbers, 8, 15, 106

Verify line numbers command, 37, 45
Version independent programming, 99
Virtual file size, 108

Warm start, 90, 140

WBOOT entry point, 140
WRITE, 142

Write Protect Disk function, 105
Write random error codes, 108

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

249

Write Random function, 108

Write Random with Zero Fill function, 110
WRITE routine, 142

Write Sequential function, 103

XSOB, 26

250 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

	img000
	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img080a
	img080b
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img162a
	img162b
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img294a
	img294b
	img295
	img296
	img297
	img298
	img299
	img300
	img301
	img302
	img303
	img304
	img305
	img306
	img307

