NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

TRE WORK REQUEST SYSTEM
A NASA 21 PACKAGE

November 15, 1979
(NASA-CR-162511) THE WORK REQUEST SYSTEM OF N80-13982 A NASA QI PACKAGE (Information Planning Associates. Inc.)

CSCL 05A
Unclas
63/81 15432

Information Planning Associates, Inc.
656 Ouince Orchard Road • Gaithersburg, Maryland 20760 • (301) 948-0740
Mailing Address: P.O. EJXT52: • Rockville, Maryland 20850

$$
\begin{gathered}
\text { Technical and Support Facilities Branch } \\
\text { Facilities Division } \\
\text { National Aeronautics and Space Administration } \\
\text { Washington, DC } 20546
\end{gathered}
$$

TABLE OF CONTENTS
Page
I. OVERVIEW -- from a presentation made at the 1 NASA Facilities Conference on October 30, 1979
II. DETAILS OF THE WORK REQUEST SYSTEM 8

1. What the System Tracks 8
2. How the System Works at Goddard 13
3. Reports Produced by the System 15
4. Installing the System 19
Attachment A Sample Reports
Attachment B Sample Operator Instructions
LIST OF FIGURES
Page
Figure 1 Sample Summary Report 6
Figure 2 Sample Trend Chart 7
Figure 3 Work Request System at Goddard, 9 Summary Flow Diagram
Figure 4 Work Request System ar Joddard, Flow Diagram 10
Figure 5 Data Collected by the system 12
Figure 6 Index of Programs 16
I. OVERVIEW

THE WORK REQUEST SYSTEM
 A NASA ©I DACKAGE

The agency has available a computer package for tracking work requests and purchase orders ior contracts). The package runs on the Ql equipment already installed at every center.

The system can be used to track any type of work which is controlled on the basis of work requests and purchase orders/contracts. It can handle about 1,200 work requests per year. At Goddard, where the system was developed, the Eacilities Engineerinc Division uses it primarily to track work that goes : 0 their unit price contractor. The value of the work requests ranges from a few dollars to upwards of $\$ 100,000$.

Milestones tracked include:

- Date of the work request
- Date the work request was recaived
- Date sent to be designed
- Date assigned to an engineer
- Estimated date from lesign
- Actual date received from design
- Dates to and from Accounting (for verification of funds)
- Dates to and from Procurement
- Date of purchase order or contract
- Construction start and end dates.

In addition to these schedule milestones, the system records various identification data, such as:

The requestor

- The work request number and a description of the work
- The purchase request number
- The purchase order or contract number
- The name of the contractor.

The system also records certain cost data:

- The original estimate for the job
- The purchase request amount
- The contract or purchase order amount
- The amount invoiced
- The amount paid.

1. WHAT THE SYSTEM AS A WHOLE DOES

It tracks the status of every work request and purchase order

It provides summary and performance reports for management. For instance, the Q1 will show the average time spent in design or in Procurement, as well as trends. Are things getting better or are they getting worse?

The work request system makes good management discipline easier. People at all levels support the system because it gives each of them something that he needs.
2. STATUS TRACKING

Tracking work requests and purchase orders gives several advantages:

1) Nothing Gets Lost -- not in design, not in procurement, not waiting for matierials, not anywhere. You don't have to answer any more embarrassing questions about that 3 -month old job for $\$ 1,500$ that was last seen the day it got logged into your department.
2) You Can Answer Status Queries -- both for your customers and for yourself. As one division head at Goddard remarked after they put in this system, "You guys never used to tell us anything; now we know what's happening on our jobs."

In addition, customers will call less often if they receive status reports, if their questions are answered the first time, and if their jobs appear to be under control.
3) Everyone Has a Checklist of His Jobs. At Goddard, the Q1 gives every engineer in the Facilities Engineering Division a list of his jobs showing what they are, when they're due, and so on. These lists have been tremendously valuable to the engineers, which is why the engineers support the system and help to keep it current.

The supervisors get similar lists. Every second week when the Q1 printouts come out, every engineer will sit down with his supervisor and go over the jobs for which he is responsible. This joint review can be as short or as long as necessary, but it provides a mechanism where:

> Forgotten jobs get remembered
> Problems are surfaced
> Delays of all kinds are noticed
> Both supervisor and engineer understand their priorities and the work to be done next.

3. SUMMARY AND PERFORMANCE INFORMATION

It is important that somebody be on top of each job, but a department head needs summary information. He can also use performance information if he can get it. The work request system provides both.

1) Sumnary Information

Figure 1 shows a typical summary report. It shows the number of jobs that have been designed but have not yet been put on a purchase order or contract. As a manager, you may be interested in knowing that more than a quarter of your jobs have been in Procurement for more than 30 days.
2) Performance Information

Figure 2 shows a trend chart that Goddard updates every month based on data points produced by the $Q 1$. This chart shows the average length of time that jobs spend in design, month by month, last year and this year. Similar trend charts are available for:

```
Overall processing time -- from when the
work request arrives to when the job is done.
```

```
Time required for a work request to reach the
facilities department. (Date of receipt less date of the work request.) If this time starts to increase, then:
--The facilities department will know that there is a problem
--The department will have the evidence with which to convince other people that there's a problem (and that it isn't within the facilities department).
```


4. GOOD MANAGEMENT MADE EASY

As noted, the work request system offers three advantages:

- Status tracking
- Summary and performance information for management
- Good management procedures.

Obviously it is people, not computers, that make good management. But having a work request system such as this one makes good management discipline easier.

First, there is a place for everything, so people tend to be more organized. For instance, everyone is in agreement on what anstitutes "completion of a work request".
. Second, things never get too far out of hand. Jobs do not get lost; deadines do not sneak up on you; delays are spotted early. In other words, the computer helps you stay organized so that you are not forever having to get organized.

Most importantly, with the $Q 1$ everybody gets rewarded for good management discipline. There's something in it for everybody. The project engineers get up-to-date lists of their jobs and when they're due. This makes the project engineers happy. Management gets performance information and early warning on problems. Overall, the department looks good because it can answer its eustomers' questions.

Experience has shown that every computer system must reward the people who feed it. If the benefits all go one way -- if the people who must supply the inputs get nothing from the system -- then the system sill work only grudgingly. The work order system was designed with this lesson in mind. It works because everybody benefits.
5. THE WORK REQUEST SYSTEM IS FULIY DEVELOPED AND AVAILABLE

- This work request system was one of the first Q1 applications in NASA. It has been up and running at Goddard since July of 1978. It is fully developed.
- The people at Goddard are very pleased with it.

It will run on \quad NASA Q1, using floppy disks only. No new equipment is needed.

Some program changes will have to be made to suit your needs ... all the reports for instance, say "Godcard Space Flight Center". Further, if the set of milestones which the system tracks does not correspond to the milestones at your center, then program adjustments will have to be made.

If the work request system interests you, you should get in touch with Jim Weir at NASA Headquarters, extension 5-3285.

FIGURE 1

Sample Summary Report

WORK REQUEST SYSTEM • FACILITIES ENGINEERING DIVISION

PROGRAM WRSMR2
SUMMARY OF PR"S ISSUED BUT NO DO OR PO AWARDED
AGE IN DAYS *PR"S
0-30 5231-606
61-90 9
91-120 2
>120 3
TOTAL 72
\$ > 30 DAYS 27

II. DETAILS OF THE WCRR REQUEST SYSTEM

This section presents the details of the computer system and of the management practices which it supports.

1. WHAT THE SYSTEM TRACKS

1) The Kinds of Jobs

The work request system can track any kind of job as long as the work is controlled by a work request or some similar piece of paper that is one-for-one with the job. If you subdivide your jobs into work packages, the system will be a poor fit for you. It will treat each of the work packages as a separate job, and subtotals at the job level will not be available. In other words, the system assumes a flat arrangement of jobs, not a hierarchical one.

Goddard uses the system to track those jobs which are assigned to its unit price contractor, the J.H. Lawrence Co. The jobs range from a few dollars to many thousands. Goddard tracks CoF projects with the FPDS system, not with this work request system, unless a COF project or portion thereof is accomplished thorugh the unit price contractor.

The pieces of paper that are tracked include:

```
- Work requests
- Associated procurement requests
- Associated delivery orders to the unit price
    contractor (or separate purchase orders)
    Associated final invoices.
```

2) The Milestones that Are Tracked

Figure 3 shows the flow of work for which the system was designed. Figure 4 shows the same flow in more detail. This flow -- Goddard's management system -- dicrated the milestones and the data to be collected.

The system can be easily adapted to track different or fewer events. If you need to increase the number of events tracked, then the reprogramming costs rise considerably. However, the system already tracks an extensive set of events.
WORK REQUEST SYSTEM AT GODDARD
SUMMARY FLOW DIAGRAM

3) The Data Collected

Figure 5 shows the full set of data that the system collects on each work request. Most of these items are optional. For instance, if reports concerning the dates to and from accounting are not desired, then those dates need not be entered.

Note these design features regaraing the data collentat:
Milestone Data Are Featured. Milestone data are the heart of the system -- the dates when the work request passed various points in its iffe.

Selected Financial Data Are Collected. The system tracks five costs:
--The original estimatec cost
--The purchase request amount
--The contract (purchase order or delivery order) amount
--The amount invoiced
--The amount paid
Space is also provided for the cost account category (called the "job order number" at Goddard), the fund source and the fund year.

Goddard uses these financial entries as an unofficial but quick reference as to the cost of jobs. The system uses the information to sategorize the jobs by cost in various reports.

Manhour Data Are Not Collected. The system does not concern itself with manhours, either estimated or actual. While such data could be collectea in place of some other data element, the system provides no facility to add up and display these hours in the ways which are usually desired.

Furthermore, manhour information (such as total shop backlog) usually requires that all work in the organization be in the system. Work requests usually represent only part of the workload. Thus, if a program to track manhours is desired, the work request system is grobably not a good choice.

Periodically, the operator runs a program which transfers inactive work requests from the active to the inactive file. They then no longer appear on the standard reports which the system prepares.

Goddard policy is to run this transfer program monthly after the monthly reports have been produced. The effect is that work requests will appear on the monthly reports until they are complete (or cancelled). Then they will appear on one monthiy report as complete (or cancelled). Then they disappear from the reports.

Data un inactive work requests is kept as long as desired.

2. HOW THE SYSTEM MORKS AT GODDARD

In order to clarify the features of the work request system, this section shows how Goddard uses it.

1) Goddard Holds Bi-Week.ly Management Reviews

Every other week, the Q1 prints reports for use within the Facilities Engineering Division. These show, by engineer, the status of all work requests. Each engineer then sits down with his supervisor and reviews his work.

2) External Reports Are Printed Monthly

Every month, the Q1 prints reports that are sent to the various customer directorates and their divisions. These list the work requests from those organizations and their status.

Certain perfermance reports are also run monthly. From these, an analyst updates the trend charts such as the one in Figure 2 on page 7.

3) Inputs Are Batched

Several people at Goddard enter data into the Q1 as part of the system; there is no full-time data-entry person. The usual pattern is as follows:

A person will process the work request or associated document

The person will record the action in pen and ink on a printout

At a later time, the person will go to the Q1 and enter the pen and ink markups into the data base.

A computer person would say that the inputs at Goddard are not done in "real time", as-you-go, but instead are "batched".

Since inputting is batched, the data in the computer is likely to be running several days behind events. This means that the source of up-to-the-minute status information is the annotated printouts kept by the various people who process work requests.

Goddard finds that this batch method of using the system best meets its needs in that:

The annotated printouts provide an audit trail which would not be available if people input directly from the various documents in passing.

The computer system is such that it is easier to make several entries at once than to go to the 01 each time a document is processed.

An up-to-the-minute data base is not needed. Goddard takes care that the data base is brought up to date before the bi-weekly reports are run. Other than that, Goddard has no need for more timely information.

4) Status Queries Are Answered from Printouts

Goddard answers status queries by reference to the annotated printouts that various people maintain. The 01 aids this process by providing up-to-date and sorted reports every two weeks. Goddard has found that the annotated printouts are a more convenient source of information than the $Q 1$ terminal itself, even if the $Q 1$ data base were as up to date as the printouts, which it is not.
5) At Goddard, the System Requires Half a Man-Year

Goddard assigns no one to operate the work request system full time. Instead, the clerical people who normally process work orders, purchase requests, and so on, all operate the 01 part time. A rough estimate of the total manpower expended is half a man-year.

A few tasks are now done automatically which were formerly done manually. However, the benefits of the system are not in manpower savings but in better control of the work and better management information.

3. REPORTS PRODUCED BY THE SYSTEM

Figure 6 is the index of the Operator's Manual for the system. It shows all of the programs that are available, among them the report-writing programs, according to this key:

```
R = Report-writing program
I = Data inputting/updating program
H = Housekeeping program
```


INOOM of proveriks

580984.	9		
WRSCKi	10	Ferforms the sequeice ohecliz on biert: Pequest Numbers.	H
WSSEMP	12	histg Work fiequests with variagees between lelivery order or Purchase Order Amount and the Prosurement fequagt Amount.	R
WRSUCR 1, 2	13	Extracts information from the antive (wPSDTA) and the inactive (WFStiST) master file and point a Cross feference of Work Request and Delivery O.der Numbers.	R
HRSLITEC	15	Prints a directory of all work request control numbers on either active (WRSLA'SA) or (WFSHIS') master riles in agcending orier.	H
WPSDJMP	16	Prints a complete listing of every field eloment on the desired input file in 4 gegments.	R, H
WRSEDIT \& WPSEPRT	19	Edit Anslysis Program - - examires every field of data within each record for errors, and prints only these records with errors.	H
WFSER 1	21	prsts work. Pequests by building and room nunber.	R
WRSFM 10	23	Program for adding a Work fequest to the Master File.	I
WRSFM20-50	25	Program for changing or adding to an existing Work Request Number.	I
WRSFOET, WRSMR 1	27	Lists work requests in design, followed by a summary by age in days.	R
WRSFOG3, WRSMR2	29	List procurement requests iscued by not contractually a warded, followed by a summary by age in days.	R
WPSFOE 4, WRSM? 3	30	Lists work requests back from desipn but no procuremmer request issued, followed by summary by ase in days.	R
$\begin{aligned} & \text { WRSFOG5 } \\ & \text { HPSMS: } \end{aligned}$	31	Lists work requests with delivery orders or purchase orders anc construstion not yet completed, followed oy a summary by age in days.	R
WPSFOG6, WFSMR5	32	Prints work requests completed but no final payment made, followed by age in days.	R
WRSFOS 7.8	33	Prints wrsfose incormation in Delivery Order number sequence.	R
WRSLMEP	34	Printing of PCN of Engineering date from last month.	R

- 5 - UPTJATED 03/30/7?

KEY:
$R=$ Report program
$I=$ Input/update program
H x Housekeeping program

INOE: of prong:

pronem		=
HESES 3	35	Frimts a losi sheet for varlouz data elements.
WRSMER2. WRETRESO. WESTRK35	37	Prints the averanc processing time for delivery seders.
WPSMERG	36	Merges the master and history files.
WPSMOU 10	40	Program oreates "Change Order" to the basic work request.
WRSMram	42	Propram transfers records from the inactive file tack to the active file.
Wrspori	45	Lists purcisas orders in ascendinz order.
VRSprici, 2	46	Lisis prosurement sontrols numbers in elironolanieal order.
WRSPRT, 2	48	Lists a range of procurement control numbers in chronological orcier.
WRSPRT	49	Print File Prosram - - this proarem prints in a format called a "Data Sneet". It can print one, all, or a range of work request control nunbers from your choice of file names (WRSDATA, WPSHISTM, WRSHORK, eEc.).
Wrsser 1,2	51	Extracts information from the astive master file (WRSDATA) and sorts it to produse a inser's statis repert.
WRSSE3.4	54	Prints a status report in organization code sequence.
WRESE5,6	56	Prints a status report in project coordinator sequence.
WRSSR 7.8	57	Prints a status report for each building.
WRSTFR	58	Transfers work requests from the active file (WISDATA) to the inactive file (WFSHIST) which have been completed and paid or cancelled.
WRSTRKO	60	Prints the averane processing time from iate of requast to date received.
WRSTRK1	61	Prints the average design procsssing time for all work requests.
WRSTRK2	62	Prints the average procurement processing time for chanze orders.

Procrif	P只	Finarat: Fiv!o	
W95\%263	69	Printe the averaze mrocurement preceesinn tine (date of prosuremett regtiset to date of award) for delivery orciers.	R
WPS:RK\%	64	Prints the averafe prostremeat prosessian time (date of procurement request te date of rward) for purciase erocrs.	R
WRSTRLS	65	Prints the averase tine from contract award to construetion start for delivery orders.	R
WFSTRESA	66	Prints the average time from contraci award to eansituetion start for purchase orders.	R
WPSTP. 6	67	Prints the averane tine from award of delivery orders tc corstruction complete.	R
WPSTR:6A	68	Prints the averafe time from award of purahase orders to construction cemplete.	R
WFSTRig 7	69	Prints the averaze time from construction start to construstio: compietc for delivery orders.	R
WRSTRS7A	70	Prints the averase time from construesion start to construction completc for purchase orders.	R
WPSTRKE	71	Prints the averace total turnarcunc time for work requests performed as delivery orders.	R
WRSTRK8A	72	Prints the average tetal turnaround time for work requests performed as purchase orders.	R
WFSTEK10	73	Prints the total contrastual value of work awarded in a given month and the value of work outstanding.	R
WFSWPLX	74	Prints sarety related work requests.	R
WRSWPL 1	75	Prints a work request control nimber 108.	H
WRS85R1, 2	77	Prints the code $500 / 800$ work requests in suilding 3 and i4.	R
AD HDC QUE	PP		
wrsery	79	Enables the user to formulate questions about any given combinations of data and obtain the answer.	R

INSTALLING THE SYSTEM

1) No New Hardware Is Required

The work request system operates using the Q1's already in place throughout NASA. It uses floppy disks only.

If the number of work requests tracked exceeds about 1,200 per year, then the system may have to be shifted to the hard disk drive which the centers also already have. This would require programming but no new hardware.
2) The Milestones to Be Tracked Must Ee Determined

New users must understand the routing of their work requests. They must then decide what milestones they wish to track. Use Figures 3, 4 and 5 as models, especially Figure 5 , the list of data to be collected. The more the center's list resembles Figure 5 or a subset thereof, the easier widi be the installation.
3) Some Programming Will Be Needed

The existing software will have to be modified as follows:

> The center's name will be substituted for Goddard's on all reports of interest to the center.
> The data entry and updating programs will be changed so that the sareen shows only those data items that interest the center, using terminology familiar to the center.
> Various reports will be changed to reflect the milestones and terminology used at the center.

Attached are sample reports produced by the system plus an extract from the Operator's Manual.

ATTACHMENT A

SAMPLE REPORTS

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
范

REPRODUCIBILITY OF TTTA

 ORIGINAL PAGE IS YOOLNOTE: The system has an excellent error-checking facility. The "Edit Analysis Report" is run against the active jobs. Any jobs that have impossible or unreasonable data entries are printed like this one, one page per job.

Here, the **** indicate that two dollar entries each exceed $\$ 100,000$. This may or may not be an error.

This error-checking program is in adeition to erfor shecking routines which are done at the tirs fata is entered or updated.
ngen

POADO AMOUMT:
ACTUAL COHST STAKT:
DAIE ACTUAL CEATST COMPLETE: --
INYOICE AHOUNT:
$\mathbf{\$ 0 . 0 0}$
$\mathbf{8 0 . 0 0}$

Rippoducibllity of tile
ORIGINAL PAGE IS POOR

[^0]bll K Kum＜－－DESCHPTIUR－－－＞
$110-25-70$
1n－nc，－76
19－95－76
10－05－iv
1n＿n5－78

19－05－78
Mn－n5－？ 8
10－05－76

1n－10－78
10－10－78
ต）－10－78
10－10－78
1n－12－78
1n－12－78
10－12－78
10－12－76
10－12－78
57t inst alh efflectur
mas inst hit：rull cables
158
OUt hlec sehy
mat gas a paint ceillimg
016 stock inst eherg lights

170 mt machbid
ing phov hire enclus：mul
inc
and he：pl phed cohid

E331 hT שl．ackis
hi89 MOUS TO MOOH
foter chout chanitt．
hoof phov walktay

hens lieplace tile
C246 HLEC WOHK

部
ह．है
ผ้ है
令
014
022
ㅍ
※ シ
E

 ORIGINAL PAGE IS POOR

人- Pantrontan: -->
首

Onj16itic
misiler:4
$\underset{\substack{\text { Sn } \\ \text { Citit }}}{ }$
童
18 am
REPRODUCTBLLITY OF THE ORIGINAL PAGE IS POOR

			$\stackrel{8}{3}$
ヘ			
- ${ }^{\text {d }}$			
	8	$!$	永

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

comtractoris mame
 a 厽宸

\qquad

\qquad 522780
522780
 $\stackrel{\pi}{N}$ 프N NN N N N～～ N ก ก に先 N NN N 우N 으N Ni
 N
侖会第领 N N会落

II\&8888888

10/11/78			\$0-499.99		F.E.D. WOHK HECUEST SYSTEMPWOCESSIMG TIMEOCTUHEM$\$ 500-2499.99$					PMOERAM: mastakI ALL. WOME MEOUESTS		
AVG. number	OF DAYS COMPLETED			,	$\begin{array}{r} 24 \\ 2 \end{array}$		${ }_{3}^{125.33}$		8		117.33	
$\begin{aligned} & \text { MORK } \\ & \text { REG } \\ & \text { MO. } \end{aligned}$	hequest DATE	DATE	$\begin{aligned} & \text { PHJ } \\ & \mathbf{C D R} \end{aligned}$	DATE EHOH ENGR.	cost	P.K. no.	$\underset{\substack{\text { Uate } \\ \text { OF } \\ \text { PR }}}{ }$	bate finon PMC	$\begin{aligned} & \text { PO/DO } \\ & \text { mo. } \end{aligned}$	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { PODDO } \end{gathered}$	$\begin{aligned} & \text { actual } \\ & \text { OwIST } \\ & \text { START } \end{aligned}$	$\begin{aligned} & \text { actual } \\ & \text { cowst } \\ & \text { conpl } \end{aligned}$
5083	12/17/76	$01 / 04 / 77$	JLW	10/11/77	\$23.585.22	57305	01/26/78	03/03/78	2231	03/03/78	03/17/78	
5514	05/13/77	05/23/77	Abl	W0/27/77	84.200 .00	57378	02/22/78	06/13/78	S41905	06/13/78	07/19/70	99/28/76
5514	05/13/77	05/23/71	abl	10/27/77	\$ ${ }^{\text {\% } 200.00}$	57378	02/22/78	66/13/78	S41905	06/13/78	01/19/78	09/28/76
5670	07/19/77	08/19/77	CL. M	n/20/77	\$3,450.00	57129	10/25/77	06/13/78	S41906	06/13/78	$05 / 21 / 78$	
5703	$08 / 26 / 77$	08/31/71	JL.	10/06/77	\$978.11	57119	$10 / 20 / 77$	12/13/77	2135	12/13/77	12/19/77	03/11/78
5795	09/23/77	10/13/77	CLL	10/25/77	\$1.897.09	57151	11/02/77	02/17/78	S50971	02/17/10	07/15/78	06/03/70

il

\% $\%$ r

ORIGINAL PAGE IS POOR
8 58888888888888888显㓭荎

10/11/78			\$0-499.99		f.E.D. WUAK REGUEST SYSTEMPMOCESSING TIMEAUGUST$\$ 500-2499.99$			Cowsthuctiohi-S-COwtancts			mork melulsts mogmah: mistakja			
AVG. number	OF DAYS COMPL.ETED			10.6363	$\begin{gathered} 30 \\ 4 \end{gathered}$		0		-		$\begin{gathered} 15.8 \\ 15 \end{gathered}$			
$\begin{aligned} & \text { MORK } \\ & \text { REO } \\ & \text { \$O. } \end{aligned}$	$\begin{aligned} & \text { Request } \\ & \text { DATE } \end{aligned}$	$\begin{aligned} & \text { DATE } \\ & \text { REECD } \end{aligned}$	$\begin{aligned} & \text { PhJ } \\ & \text { con } \end{aligned}$	DATE PROM ENGM.	COST	$\begin{gathered} \text { P.R. } \\ \text { MO. } \end{gathered}$	$\begin{gathered} \text { DATE } \\ \text { OF } \\ \text { PH } \end{gathered}$	$\begin{aligned} & \text { UATE } \\ & \text { PMOM } \\ & \text { PMOF: } \end{aligned}$	$\begin{aligned} & \text { Ru/100 } \\ & \text { no. } \end{aligned}$	$\begin{gathered} \text { DATE } \\ \text { OF } \\ \text { PODO } \end{gathered}$	$\begin{aligned} & \text { ACTUALL } \\ & \text { consit } \\ & \text { STAMT } \end{aligned}$	$\begin{aligned} & \text { actual } \\ & \text { comst } \\ & \text { compl } \end{aligned}$	palo IMwoIce AHT	
5795	09/23/71	10/13/77	CL. ${ }^{\text {S }}$	10/25/71	\$1,897.00	57151	11/02/77	02/17/78	S50971	02/17/78	07/15/78	08/03/78	8 89.09	van
5815	. $10 / 19 / 77$.	10/20/71	JL.W	03/74/78	\$120.00	57440	03/15/78	C5/09/78	S52833	05/05/78	08/04/78	08/04/78	- \$0.00	
5817	10/19/71	10/20/77	JLW	03/14/78	\$498.00	57438	03/15/78	05/10/78	S52639	04/25/78	06/04/78	08/24/78	\$9.00	min
5818	10/19/71	10/20/17	J.W	03/14/78	\$235.00	57445	03/15/78	04/25/78	S526 38	04/25/78	98/08/78	08/08/78	(60.00	\pm
5819	10/19/77	10/20/77	JLW	03/14/78	(23.00	57439	03/15/78	06/23/78	S54306	06/22/78	97/20/76	00/11/78	- \$0.00	d
581901					\$673.0s	574390901	05/12/78	06/23/78	SS4306	06/23/78			80.00	
5829	W/19/71	10/20/17	J.N	03/14/78	\$372.00	57444	03/15/78	04/25/76	S526 37	04/25/78	07/28/78	98/08/78	3 -	3 H
5821	80/19/77	-0.20/17	JLW	03/14/78	\$420.00	51447	03/15/78	05/09/78	S52873	05/05/78	08/08/76	08/08/78	(\$0.00	5 mL
5822	10/19/77	10/20/77	J.W	03/14/78	\$240.00	57440	03/15/78	05/09/76	S52833	05/95/78	07/28/76	00/04/76	8 80.00	Mil
5824	10/19/77	10/20/77	J. ${ }^{\text {d }}$	03/14/78	\$ 311.88	57448	03/15/78	05/15/78	553156	05/08/78	07/18/78	08/04/78	\% 80.00	2 m
5827	10/19/17	10/20/71	J.W	03/14/78	. 8400.00	57441	03/15/78	05/09/78	S52860	05/05/78	07/17/78	08/08/78	\$ \$n.00	1 HL
5831	10/19/71	10/20/71	JLW	03/1m/78	\$375.00	57×42	03/15/78	05/09/78	S52874	05/05/78	07/17/78	08/13/78	+ 80.00	m
6080	01/12/78	01/25/78	was	05/03/78	\$681.09	06580	$05 / 03 / 78$	06/07/78	S53746	06/06/78	06/16/78	08/15/78	(80.00	cmill
6323	$6{ }_{6} 683 / 78$	05/03/78	CLM	C5/10/78	\$500.00	57602	05/12/78	$06 / 28 / 78$	S54309	06/28/78	07/15/78	08/03/78	80.00	H2
6351	04/21/78	05/09/78	CL. ${ }^{\text {a }}$	05/18/78	\$494.09	57621	05/19/78	07/10/78	S54710	07/10/78	08/10/78	08/17/78	\$0.00	1 ml
6556	08/09/78	08/09/78	CIM	98/10/78	\$84. 52	51799	08/10/78	08/21/78	S60402	08/21/78	00/21/78	08/29/78	3 80.00	8 m

REPRODUCIBILITY OF
ORIFINAL PAGE IS POORIL

UV BUILDIIL
PHOC.

$\stackrel{\substack{3 \\ 3}}{\frac{4}{5}}$
902 Cuntiete 0bisiy

dATE PRIMTED 10/20/79

deliverr orpork hequest ststeh - facilitili dengineenimg divisioi

0L-LO-LO 11-10-16. 09-30-76. 07-11-78 09-07-78. 09-07-70 09-16-77 -8L-9l-80 OL-IE-50 07-18-76 - 日L-zı-ot 08-21-78 06-15-76 02-16-78. 07-26-78 on-12-78 06-25-77 -10-03-78
10-03-78
$09-28-78$
$09-28-76$
$09-14-78$
$09-12-76$
 09-20-70 $09-20-78$
09-06-77 09-08-77 09-07-7 -06-06-78 .11-17-76. 05-11-78 8L-50-50 $\quad 10255$ 04-14-78 07-19-70 09-02-71 03-03-76 .-08-31-77. LL-Ez-60 -8L-zo-zo 05-15-77
O6-05-78 $06-05-78$
$06-05-78$ RL-E1-50 06-13-70 09-28-77
$04-11-78$

91614s 534340
0057 0051 : 2470 553736
0085 2378 ... s41554 2493 $102 z$
-2002 Zefofs
$-\quad$ Igeo Lllzz-s
2EEOES sonc
zifocs
Llezz-s (1)
 5296 -... 301 . Paint file cab. . 5501:-850 - DISti BOX 4 HEWIRE EO 5501 - BSO - DIST BOK \& REVIRE EO 5514 _- 713 anclosure :-.......... 5514——713_enclosure. $5504 \ldots 290$..... CONCRETE CUFB
$5619 \ldots 80 \ldots$ InSTALL N/C

SAMPLE OPERATOR INSTRUCTIONS

OPERATING PROCEDURES - WRSFOC1, WRSMR1

PRINTING KRSFOG - VORK REQUESTS IN DESIGN

PRINTIHG WRSMRI - SURBRY OF WORK REOUESTS IM DESIGN

1. Insert diskettes in the following manner:

Program 02 disk in Drive 11
WRSDATA disk in Drive 02
WRSWORK1 disk in Drive 3
WRSWORK4 disk in Drive 04.
2. Key in WRSFOi and depress the Return Key.
3. Q1 will display on the sercen:
'enter c for cont forms, s for 1 page'
Key in "C" and depress the Return Key if you have continous forms in the printer.
Key in "S" and depress the Return Key if you are using single pages in the printer.
4. Q1 will now display:
'ENTER R FOR A RAMGE, A FOR ALL RECCRDS'
Key in "A" ir you wish to print all work requests in design and depress the Return Key. Proceed to step 5.

Key in " $\mathrm{S"}$ " if you wish to print only a specific range of work requests in design and depress the Return Key. If you select this option, the 01 will display on the screen:
'EMTER EEGIMNING WRCN DESIRED'
Key in the first work request control number you wish to see printed and depress the Return Key. Ql will then display on the screen:

- 'emter endimg wren'

Key in the last work request control number you wish to see printed and depress the Return Key.

If you have entered an invalid range of WRCN's, the Qi will display an error message on the screen. Depress the Return Key and 80 back to the beginning of step 4.
5. Q1 will now begin selection of records from the WRSDATA that meet the above specified condilions. Selected records are then copied to a hork area on disk riaskicki. hicn the selection is complete. the 01 will print thic I/O statistice.
6. Q1 will now sort the selected records into project coordinator sequence and print the first report.
7. Following the WRSFO2 report, the WRSMRI will automstically print (the report is only one page).
8. When the report is completed, the Q1 will display on the screen: 'QY/LITE AT YOUR SERVICE'

RESTARTIMG:

If the paper jams or the ribbon breaks while the report is printing. do the rollowing:

1. Hit the red reset button on the side of the machine.
2. Pop out all disks from the drives.
3. Turn the machine off.
4. Re-align the paper or replace the ribbon.
5. Key in WRSFCG2 and depress the Return Key.
6. The report should begin printing immediately, followed by WIRSMR 1.

If a problem occurs before the report has printed, you must rerun the jcb starting with step 1.

OPERATIMG PROGEDURES - WRSTFR

TRANSFERRTMG GOMPLETED OR ER!CEEL.L.ED WARK REQUESTS FROM THE ACTIVE FILE (WRSDATA) TO IHE IMACTIVE FILE (HinSHIST)

1. Execute backup procedures for WRSDATA and WRSHIST.
2. Insert the disks in the following manner:

Program il in Drive 1
WRSDATA in Drive 02
WRSHISTI in Drive 3
WRSHORK3 in Drive 4
3: Key in WRSTER and depress the Return Key.
4. Q1 will display on the screen:
'enter c for cont forms, s for i page'
If you have continusus forms in the printer, key in "C" and depress the Return Key.

If you have single page forms in the printer, key in "S" and depress the Return Key.
5. Q1 will now display on the screen:
'RDNOVE PROGRAM DISK - DISERT WRSHIST2 hIT RETURN WHEN DISK IS READY'

Operator must replace the program disk with WRSHISTE in Drive 11 and then depress the Return Key.

Q1 will now begin transferring records. The total process will take about 20 minutes, so be patient.
6. When all records have been transferred, 61 wlil print out all $1 / 0$ statistics and then display on the screen:
yyou must remove the visdata disk
and insert the progray disk ol
--ALSO--
HIT RETURM TO SORT WRSHTST 1
YOU MUST SORT WRSHISTE UPON COMPLETIDN
DF SJRTIMG THE WRSHTSTI FILE'
The operator can remove the WRSCaTA and insert the Progran 11 disk and depress the Return Key to sort the WRSHISTI rlle.

Upon completion of the sort, the opsrator mist now tyoe in "SORT WRSHIST2 WRS'RRKT" to sort the change order ride.

Upon the completion of the second sort, both history rlles must be removed from the drives.
7. Remove all disks from all drives.
8. Exceute backup procedures for WRSDATA and WRSHIST using two different backups from those in step ${ }^{1} 1$.

Upon completion the Q1 Wild display on the screen:
'qinite at your service'
A new Work request Number log should be priated for both the active (WRSDATA) and the inactive (WRSHIST) riles, according to the procedure for running the log.
$=$

[^0]:

